Запись закона отражения

Запись закона отражения

Сборник задач по физике ( Рымкевич ), 1983 г .

Демонстрационные опыты по физике (Покровский), 1970 г.

Домашнее задание: ЛОС-22, § 60-62.

1. Когда и кем впервые была измерена скорость света?
2. Численное значение скорости света в вакууме.
3. Как зависит скорость света от среды?

II. Изложение нового материала.

1. Принцип Гюйгенса.
2. Закон отражения света.
3. Закон преломления света.
4. Полное отражение света.
5. Применение на практике данных законов.

I V . Закрепление материала ЛОС-22.

I. Урок начинается с объявления темы и цели урока.

II. Повторение материала изученного на прошлом уроке.

III . Изучение нового материала.

1) Принцип Гюйгенса. Объясняется 1 блок листа опорных сигналов. Формулируется принцип Гюйгенса. Работа с учебником (дети самостоятельно находят в учебнике исторические сведения об ученом).

2) Показывается фрагмент: «Поведение светового луча», из которого следует вывод, что свет может поглощаться, отражаться, рассеиваться, преломляться.

3) Рассматриваем демонстрацию закона отражения света. Формулируется закон отражения света.

4) Рассматривая данный рисунок, дайте ответ на вопрос: Почему мы видим только часть книги?

5) Виды отражения света: зеркальное и диффузное.

6) Как пример отражения света, рассматриваем изображение в плоском зеркале. Вместе с учащимися даем характеристики изображению в зеркале.

7) Объясняется 2 блок конспекта (дети заносят его в тетрадь). Формулируется полностью закон отражения света. Дается формулировка закона преломления света. Математическую запись закона преломления вынести на доску, еще раз обратить внимание детей на его запись.

8) Демонстрируется преломление света на границе двух сред.

9) Демонстрируется фрагмент преломления света. Обратить внимание на поведение преломленного светового луча, в зависимости от плотности сред.

10) Познакомить учащихся с понятием полного отражения света.

11) На примере анимационной картинки «Мираж» объясняется причина возникновения полного отражения света. Рассказывается о применении законов геометрической оптики человеком на практике.

12) Объяснить учащимся поведение светового луча в стеклянной призме, обратить внимание на двойное преломление света на границах раздела 2-х сред.

13) На экране появляется полностью лист опорных сигналов сегодняшнего урока, учитель еще раз акцентирует внимание детей на главном.

14) Задание на дом:

15) Повторить материал основной школы по прямолинейному распространению света. Образование тени и полутени. Показать парадоксальное явление «Появление монеты в чашке», которое объясняется с точки зрения закона преломления света.

16) Фильм-загадка. Показать фрагмент фильма «Горит ли свеча в воде?» с постановкой вопроса, чтобы на следующем уроке выслушать мнения учащихся по данному фрагменту.

17) Решение задачи №1090, Рымкевич . Сборники задач и четырехзначные таблицы на столах. Задача на закрепление изученного материала (закона преломления света). Учащийся читает условие задачи, по таблице дети находят показатели преломления для необходимых сред. Задача решается у доски.

*ООО « Медиаресурсы » за предоставленные автором материалы ответственности не несёт

files.school-collection.edu.ru

Законы отражения света

На границе раздела двух различных сред, если эта граница раздела значительно превышает длину волны, происходит изменение направления распространения света: часть световой энергии возвращается в первую среду, то есть отражается, а часть проникает во вторую среду и при этом преломляется. Луч АО носит название падающий луч, а луч OD – отраженный луч (см. рис. 1.3). Взаимное расположение этих лучей определяют законы отражения и преломления света.

Рис. 1.3. Отражение и преломление света.

Угол α между падающим лучом и перпендикуляром к границе раздела, восстановленным к поверхности в точке падения луча, носит название угол падения.

Угол γ между отражённым лучом и тем же перпендикуляром, носит название угол отражения.

Каждая среда в определённой степени (то есть по своему) отражает и поглощает световое излучение. Величина, которая характеризует отражательную способность поверхности вещества, называется коэффициент отражения. Коэффициент отражения показывает, какую часть принесённой излучением на поверхность тела энергии составляет энергия, унесённая от этой поверхности отражённым излучением. Этот коэффициент зависит от многих причин, например, от состава излучения и от угла падения. Свет полностью отражается от тонкой плёнки серебра или жидкой ртути, нанесённой на лист стекла.

Законы отражения света

Угол отражения γ равен углу падения α :

Законы отражения света были найдены экспериментально ещё в 3 веке до нашей эры древнегреческим учёным Евклидом. Также эти законы могут быть получены как следствие принципа Гюйгенса, согласно которому каждая точка среды, до которой дошло возмущение, является источником вторичных волн. Волновая поверхность (фронт волны) в следующий момент представляет собой касательную поверхность ко всем вторичным волнам. Принцип Гюйгенса является чисто геометрическим.

На гладкую отражательную поверхность КМ (рис. 1.4) падает плоская волна, то есть волна, волновые поверхности которой представляют собой полоски.

Рис. 1.4. Построение Гюйгенса.

А1А и В1В – лучи падающей волны, АС – волновая поверхность этой волны (или фронт волны).

Пока фронт волны из точки С переместится за время t в точку В, из точки А распространится вторичная волна по полусфере на расстояние AD = CB, так как AD = vt и CB = vt, где v – скорость распространения волны.

Волновая поверхность отражённой волны – это прямая BD, касательная к полусферам. Дальше волновая поверхность будет двигаться параллельно самой себе по направлению отражённых лучей АА2 и ВВ2.

Прямоугольные треугольники ΔАСВ и ΔADB имеют общую гипотенузу АВ и равные катеты AD = CB. Следовательно, они равны.

Углы САВ = = α и DBA = = γ равны, потому что это углы со взаимно перпендикулярными сторонами. А из равенства треугольников следует, что α = γ .

Из построения Гюйгенса также следует, что падающий и отражённый лучи лежат в одной плоскости с перпендикуляром к поверхности, восстановленным в точке падения луча.

Законы отражения справедливы при обратном направлении хода световых лучей. В следствие обратимости хода световых лучей имеем, что луч, распространяющийся по пути отражённого, отражается по пути падающего.

Большинство тел лишь отражают падающее на них излучение, не являясь при этом источником света. Освещённые предметы видны со всех сторон, так как от их поверхности свет отражается в разных направлениях, рассеиваясь. Это явление называется диффузное отражение или рассеянное отражение. Диффузное отражение света (рис. 1.5) происходит от всех шероховатых поверхностей. Для определения хода отражённого луча такой поверхности в точке падения луча проводится плоскость, касательная к поверхности, и по отношению к этой плоскости строятся углы падения и отражения.

Рис. 1.5. Диффузное отражение света.

Например, 85% белого света отражается от поверхности снега, 75% — от белой бумаги, 0,5% — от чёрного бархата. Диффузное отражение света не вызывает неприятных ощущений в глазу человека, в отличие от зеркального.

Зеркальное отражение света – это когда падающие на гладкую поверхность под определённым углом лучи света отражаются преимущественно в одном направлении (рис. 1.6). Отражающая поверхность в этом случае называется зеркало (или зеркальная поверхность). Зеркальные поверхности можно считать оптически гладкими, если размеры неровностей и неоднородностей на них не превышают длины световой волны (меньше 1 мкм). Для таких поверхностей выполняется закон отражения света.

Рис. 1.6. Зеркальное отражение света.

Плоское зеркало – это зеркало, отражающая поверхность которого представляет собой плоскость. Плоское зеркало даёт возможность видеть предметы, находящиеся перед ним, причём эти предметы кажутся расположенными за зеркальной плоскостью. В геометрической оптике каждая точка источника света S считается центром расходящегося пучка лучей (рис. 1.7). Такой пучок лучей называется гомоцентрическим. Изображением точки S в оптическом устройстве называется центр S’ гомоцентрического отражённого и преломлённого пучка лучей в различных средах. Если свет, рассеянный поверхностями различных тел, попадает на плоское зеркало, а затем, отражаясь от него, падает в глаз наблюдателя, то в зеркале видны изображения этих тел.

Рис. 1.7. Изображение, возникающее с помощью плоского зеркала.

Изображение S’ называется действительным, если в точке S’ пересекаются сами отражённые (преломлённые) лучи пучка. Изображение S’ называется мнимым, если в ней пересекаются не сами отражённые (преломлённые) лучи, а их продолжения. Световая энергия в эту точку не поступает. На рис. 1.7 представлено изображение светящейся точки S, возникающее с помощью плоского зеркала.

Луч SO падает на зеркало КМ под углом 0°, следовательно, угол отражения равен 0°, и данный луч после отражения идёт по пути OS. Из всего множества попадающих из точки S лучей на плоское зеркало выделим луч SO1.

Луч SO1 падает на зеркало под углом α и отражается под углом γ ( α = γ ). Если продолжить отражённые лучи за зеркало, то они сойдутся в точке S1, которая является мнимым изображением точки S в плоском зеркале. Таким образом, человеку кажется, что лучи выходят из точки S1, хотя на самом деле лучей, выходящих их этой точки и попадающих в глаз, не существует. Изображение точки S1 расположено симметрично самой светящейся точке S относительно зеркала КМ. Докажем это.

Луч SB, падающий на зеркало под углом 2 (рис. 1.8), согласно закону отражения света отражается под углом 1 = 2.

Рис. 1.8. Отражение от плоского зеркала.

Из рис. 1.8 видно, что углы 1 и 5 равны – как вертикальные. Суммы углов 2 + 3 = 5 + 4 = 90°. Следовательно, углы 3 = 4 и 2 = 5.

Прямоугольные треугольники ΔSOB и ΔS1OB имеют общий катет ОВ и равные острые углы 3 и 4, следовательно, эти треугольники равны по стороне и двум прилежащим к катету углам. Это означает, что SO = OS1, то есть точка S1 расположена симметрично точке S относительно зеркала.

Для того чтобы найти изображение предмета АВ в плоском зеркале, достаточно опустить перпендикуляры из крайних точек предмета на зеркало и, продолжив их за пределы зеркала, отложить за ним расстояние, равное расстоянию от зеркала до крайней точки предмета (рис. 1.9). Это изображение будет мнимым и в натуральную величину. Размеры и взаимное расположение предметов сохраняются, но при этом в зеркале левая и правая стороны у изображения меняются местами по сравнению с самим предметом. Параллельность падающих на плоское зеркало световых лучей после отражения также не нарушается.

Рис. 1.9. Изображение предмета в плоском зеркале.

В технике часто применяют зеркала со сложной кривой отражающей поверхностью, например, сферические зеркала. Сферическое зеркало – это поверхность тела, имеющая форму сферического сегмента и зеркально отражающая свет. Параллельность лучей при отражении от таких поверхностей нарушается. Зеркало называют вогнутым, если лучи отражаются от внутренней поверхности сферического сегмента. Параллельные световые лучи после отражения от такой поверхности собираются в одну точку, поэтому вогнутое зеркало называют собирающим. Если лучи отражаются от наружной поверхности зеркала, то оно будет выпуклым. Параллельные световые лучи рассеиваются в разные стороны, поэтому выпуклое зеркало называют рассеивающим.

av-physics.narod.ru

Закон отражения и преломления света

Законы отражения и преломления изучает специальный раздел физики, называемый оптика. Термин «оптика» корнями уходит к греческому слову «optike». Это наука, изучающая зрительные восприятия. Отражением лучей восходящего солнца в реке или озере не раз любовался любой человек, даже не задумываясь о том, что это, на первый взгляд, простое физическое явление, используется во многих областях науки и техники.

Суть явления

Суть этих физических процессов состоит в следующем. Имеются две различные среды. Направленный поток света, достигая границы между этими средами, меняет своё направление следующим образом: часть световой энергии возвращается в начальную среду, а другая часть проникает в следующую. Условие, при котором происходит этот процесс, следующее: граница, разделяющая две среды должна быть значительно больше длины волны. Возвращённая часть энергии называется отражением, а прошедшая — преломлением. На рисунке наглядно видно, что луч АО падает, а OD — отражается.

Явление, при котором определённая часть света возвращается в первоначальную среду, называется отражением.

Этот оптический закон объясняет некоторые физические явления и используется во многих направлениях. Так, хорошо известная наука акустика, которая изучает физическую природу звука, объясняет этим законом причину эха. Учёные-акустики с успехом применяют это свойство в гидролокационных установках, а геологи научились изучать сейсмоволны, зная это явление.

Явление характерно не только для видимого человеческому глазу света. Ему подчиняются электромагнитные, ультракороткие (УКВ), высокочастотные радиоволны и даже рентгеновские лучи на малых углах и при помощи специальных зеркал. УКВ и радиоволны высоких частот используются в радиотехнике и радиолокации.

В медицине отражение ультразвука успешно применяется в УЗИ — установках для диагностики.

Наглядно виден из рисунка угол α, который определяет луч, падающий к границе разделения сред, и перпендикуляр, направленный к плоскости в месте проникновения луча. Это и есть угол падения.

Следующий угол γ, образован лучом OD, который отражается от поверхности раздела, и тем же самым перпендикуляром. Он именуется углом отражения.

Любой среде свойственна способность отражать излучение света и поглощать его. Показатель, характеризующий способность отражать лучи, имеет название коэффициент отражения. Он определяет соотношение доли энергии между принесённой путём излучения на поверхность тела энергии и аналогичной унесённой от этой же поверхности. Прямую зависимость этого коэффициента определяет ряд причин, в частности, какой состав излучения, а также угол падения. Идеальным или полным считается отражение от жидкой ртути, которая нанесена на стекло или тоненькой серебряной плёночки.

Законы падения и отражения были известны в Древней Греции. Их вывел и доказал учёный Евклид на основе практических опытов. Эти правила, наглядно иллюстрируемые рисунком, сформулированы следующим образом:

  • Падающие и отражающие лучи, и перпендикуляр, направленный к границе разделения сред, в точке падения луча, располагаются в одной плоскости.
  • Величина угла падения α равна величине угла отражения γ.

Если записать этот закон в виде формулы, то он будет выглядеть следующим образом: γ = α.

Эти определения являются также следствием принципа Гюйгенса и используются для решения многих задач по оптике.

Закон преломления

Падающая на плоскую границу волна света отражается от границы раздела и преломляется, проходя из одной среды в другую с определённой силой прозрачной среды. Эта характеристика является показателем преломления, который физики называют коэффициентом преломления.

Показатели преломления и величина угла падения взаимосвязаны. Чем больше этот угол падения, тем больше следует ожидать величину угла преломления.

Формула показателя преломления:

Полное внутреннее отражение происходит из-за превышения угла падения критического значения, при котором падающая волна полностью отражается. Известно, что показатель отражения имеет самые большие значения для полированных зеркальных поверхностей.

Практическое применение

Человечество не упустило возможность применения законов преломления и отражения на практике. Различные проявления используются в зеркалах (плоское, вогнутое, выпуклое). Эти явления нашли применения в перископах, фарах автомобилей, в прожекторных установках. Успешно решаются задачи при построении изображений в линзах, микроскопах и других оптических приборах, например, бинокль, фотоаппарат или проектор.

Зеркальное отражение света происходит при падении на абсолютно гладкую и ровную плоскость лучей света под углом. Оптической гладкостью зеркала считаются поверхности с неровностями меньше 1 мкм (длины световой волны). В этом случае закон отражения света считается выполненным.

  • плоские;
  • сферические вогнутые;
  • сферические выпуклые.

В плоском зеркале отражающая поверхность испускает параллельные пучки. В сферических зеркалах эта параллельность нарушена.

Довольно частое применение в технике и быту нашли применение зеркала, отражающая плоскость которых различна. Примером является зеркало со сферическими сегментами. Его полушария отражают свет, при этом параллельность отражённых лучей не выполняется. Зеркала делятся на два типа. Одни имеют вогнутость, вторые — выпуклость. В первом случае лучам свойственно отражаться от внутренней поверхности сферы и собираться в определённой точке. Из-за этого свойства их называют собирающими. Второй случай предполагает отражение лучей от выпуклости, при этом происходит полное их рассеивание в разные стороны.

Законы оптики позволяют решать многие задачи и довольно успешно применяются во многих отраслях.

obrazovanie.guru

Конспект урока по физике 8 класс «Отражение света. Закон отражения»

Успейте воспользоваться скидками до 50% на курсы «Инфоурок»

Тема урока: «Отражение света. Закон отражения».

Тип урока: открытие нового знания.

Цель урока: познакомить с явлением отражения света и законами, которым подчиняется это явление.

обеспечить усвоение основных понятий: явление отражение света, угол падения, угол преломления, понятие сред с разной оптической плотностью, закон преломления света;

-формирование следующих общеучебных навыков и умений: решать задачи качественные и количественные по данной теме, проводить эксперимент; делать выводы;

-формирование навыков анализа и синтеза информации, самоконтроля .

воспитательная : содействовать в ходе урока формированию мировоззренческих идей – причинно следственных связей явлений, практической направленности данной темы.

развивающая: способствовать развитию логического и аналитического мышления, умению сравнивать и обобщать факты и явления, развитие познавательных интересов и творческих способностей учащихся; развитие у учащихся потребностей к самообразованию.

Предметные результаты : понимание сущности определения понятий «угол падения», «угол отражения», «обратимость световых лучей», «отражение света»; помочь экспериментально установить и сформулировать закон отражения света.

Метапредметные результаты : понимание и способность объяснить такое физическое явление как отражение света, понимание смысла закона отражения света.

Личностные результаты: понимание значения закона отражения света в жизни человека и умение использовать полученные знания в повседневной жизни; формирование и развитие коммуникативных умений, умения общаться и взаимодействовать в коллективе, работать в парах, уважать мнение других.

Форма: фронтальная, коллективная, индивидуальная.

Методы обучения: словесные, наглядные, практические.

Оборудование: ПК, мультимедийный проектор, экран, зеркало, лазерный луч, транспортир, карандаш.

3. Подготовка к восприятию нового материала (7м)

4. Изложение нового материала (16м)

5.Закрепление изученного материала (11м)

6. Итог урока. Рефлексия (2м)

7. Домашнее задание к следующему уроку (1м)

Приветствие учащихся, самоконтроль готовности к уроку.

2 . Актуализация знаний

Учитель: На прошлом уроке мы познакомились с новым разделом физики. Сегодня мы продолжим изучать данный раздел. Но прежде чем преступим к изучению новой темы, вам нужно ответить на вопросы по материалу прошлого урока.
1. Что такое оптика? ( Оптика- это раздел физики, изучающий световые явления )
2. Что такое свет? ( Свет – это излучение, которое воспринимается глазом)

3. Дайте определение источника света. ( Тело, способное излучать свет, испускать определенный диапазон электромагнитных волн).

4. Какие виды источников света вы знаете? (Естественные и искусственные)

5. Какой источник света мы будем называть точечным? (Источник света, размеры которого много меньше тех расстояний, которые он проходит)
6. Сформулируйте определение светового луча. (Световой луч – это линия, вдоль которой распространяется энергия от источника света)

7. Как распространяется свет в однородной прозрачной среде? (Свет в однородной среде распространяется прямолинейно)

8. Чем в природе подтверждается прямолинейность распространения света (образованием теней и полутеней)

9. Дайте определение тени ( Это та область пространства, в которую не попадает свет от источника )

10. Из-за чего возникают солнечные и лунные затмения? ( По причине взаимного расположения Земли, Луны, Солнца)

Учитель: Ребята, я прочитаю вам отрывки из стихотворений, в которых упоминаются источники света, а вы распределите их по видам.

1. Горящая спичка.

Как золотая птичка,

Дрожит огонь впотьмах.

В одну минуту спичка

Сгорит в моих руках. (А. Тарковский)

Звезда, звезда, холодная звезда,

К холодным иглам ты все ниже никнешь.

Ты на заре исчезнешь без следа

И на заре из пустоты возникнешь. (В. Луговской)

Лунный свет — простое отражение,
В нем горенья нет
Холодно без капли напряженья
Льется лунный свет
Учитель: — Все правильно. А Луна? Почему же она не попала ни в одну из групп? Является ли Луна источником света?

Ученики: Нет. Она сама не светит!

Учитель: Тогда почему мы её видим?

Ученики: Она отражает свет, и он попадает нам в глаза.

Учитель: Правильно. Наверняка каждый из вас развлекался в детстве, пуская солнечных зайчиков. Зеркальце нужно повернуть таким образом, чтобы на него попадали солнечные или какие-нибудь другие яркие лучи. Так мы получим пучок света, который можно направлять в нужное нам место, поворачивая зеркальце.

Какой вывод можно сделать: попадающие на зеркальце лучи отражаются от него не как угодно, а определенным образом. Иначе мы бы не смогли управлять этим пучком, поворачивая зеркало.

Учитель: А мы знаем, как происходит отражение света и каковы его законы?

Ученики: Не знаем.

3. Постановка цели и задач урока учащимися.

Учитель: Значит. Какой будет тема нашего занятия?

Ученики: Отражение света. Закон отражения света

Учитель: Всё верно, запишем тему урока в тетрадь «Отражение света. Закон отражения света» . А какую же мы поставим цель на этот урок?

Ученики: Получить новые знания об отражении света.

4. Изучение нового материала

В древности представление о свете было достаточно примитивным, а иногда даже фантастическим. Однако уже в V веке до н.э. древнегреческий ученый Демокрит понял, что Луна светит не своим, а отраженным солнечным светом. Мы с вами тоже можем видеть предметы лишь потому, что от них отражается свет.

По готовому рисунку учитель показывает падающий луч, отражённый луч, перпендикуляр, восстановленный в точке падения.

1.Линия MN – поверхность раздела двух сред.

2.На эту поверхность из точки S падает пучок света. Его направление задано лучом SO . Луч SO – падающий луч.

3.Луч OB – отраженный луч

4.Из точки падения луча О проведем перпендикуляр OC к поверхности MN .

5.Угол между падающем углом и перпендикуляром к отражающей поверхности в точке падения луча называется углом падения ()

6.Угол между отраженным углом и перпендикуляром к отражающей поверхности в точке падения луча называется углом отражения ()

Цель работы: изучить закон отражения света.

Оборудование: плоское зеркало, лазерный луч, транспортир, линейка, карандаш.

Изучение отражения света с помощью плоского зеркала.

1.1. Положите на стол лист бумаги, а на него вертикально поставьте зеркальце. Направьте луч лазера на зеркальце и получите отражённый луч.

1.2. Проведите на бумаге вдоль нижнего края зеркала линию О 1 О 2 . Отметьте на ней т. O – точку падения луча на зеркало. Также отметьте т. A и т. B – две любые точки, через которые проходят падающий и отражённый лучи.

Сделайте вывод, о том в какой плоскости располагаются падающий и отражённый лучи.

Вывод: (предполагаемый) Лучи, падающий и отраженный, лежат в одной плоскости.

1.3. Теперь зеркало и лазер можно убрать. Соедините точки A с O и B с О линией – это падающий и отражённый лучи. Постройте перпендикуляр к линии О 1 О 2 (то есть к отражающей поверхности зеркала), проведя его из т. O.

1.4. Измерьте угол падения луча ( Угол падения – это угол, образованный падающим лучом и перпендикуляром от точки падения луча) , а также угол отражения луча ( Угол отражения – это угол, образованный тем же перпендикуляром и отраженным лучом).

Запись закона отражения в тетрадь.

Лучи, падающий и отраженный, лежат в одной плоскости с перпендикуляром, проведенным к границе раздела двух сред в точке падения луча.

Угол падения равен углу отражения: .

5.Закрепление изученного материала

1. Угол падения луча на зеркало 60 0 . Чему равен угол между падающим и отраженным лучами:

2. На зеркало падают два луча: их углы падения 30 0 , и 45 0 . Угол между отраженными от зеркала лучами равен:

3. Углом падения светового луча называют …

А) …угол между лучом света и поверхностью, на которую он падает;

Б) …угол, образованный падающим на поверхность лучом света и продолжением перпендикуляра к этой поверхности;

В) …угол, образованный падающим на поверхность световым лучом и перпендикуляром к ней в точке падения луча;

Г) …угол, между падающем лучом света и отраженным лучом.

4. Угол между лучом и зеркалом равен 30 0 . Чему равен угол падения лучей на плоское зеркало:

5. На каком из рисунков представлен ход отраженных лучей от зеркальной поверхности?

1. Угол падения луча на зеркало 30 0 . Чему равен угол между падающим и отраженным лучами:

2. На зеркало падают два луча: их углы падения 40 0 , и 55 0 . Угол между отраженными от зеркала лучами равен:

3. Углом отражения светового луча называют …

А) …угол между лучом света и поверхностью, на которую он падает;

Б) …угол между отраженным световым лучом и перпендикуляром к отражающей поверхности в точке падения луча;

В) …угол, образованный падающим на поверхность световым лучом и перпендикуляром к ней в точке падения луча;

Г) …угол между падающим и отраженным лучом.

4. Угол между лучом и зеркалом равен 60 0 . Чему равен угол падения лучей на плоское зеркало:

5. На каком из рисунков представлен ход отраженных лучей от зеркальной поверхности?

По итогам теста поставьте в маршрутный лист по одному баллу за каждое верно выполненное задание.

Вариант 1: Г А В В А

Вариант 2: Б А Б А А

Учитель: Скажите, пожалуйста, что же вы сегодня узнали на уроке?

Ученик: Сегодня на уроке мы познакомились с новым для вас явлением. Узнали, по каким законам происходит отражение света, что такое обратимость световых лучей.

Учитель: Достигли мы цели, какую поставили в начале урока?
Ученики : Да

Учитель: Молодцы, спасибо за урок!

7.Домашнее задание: §63 упражнение 30, №3

infourok.ru

Закон отражения света

Отраженный и падающий лучи лежат в плоскости, содержащей перпендикуляр к отражающей поверхности в точке падения, и угол падения равен углу отражения.

Представьте, что вы направили тонкий луч света на отражающую поверхность, — например, посветили лазерной указкой на зеркало или полированную металлическую поверхность. Луч отразится от такой поверхности и будет распространяться дальше в определенном направлении. Угол между перпендикуляром к поверхности (нормалью) и исходным лучом называется углом падения, а угол между нормалью и отраженным лучом — углом отражения. Закон отражения гласит, что угол падения равен углу отражения. Это полностью соответствует тому, что нам подсказывает интуиция. Луч, падающий почти параллельно поверхности, лишь слегка коснется ее и, отразившись под тупым углом, продолжит свой путь по низкой траектории, расположенной близко к поверхности. Луч, падающий почти отвесно, с другой стороны, отразится под острым углом, и направление отраженного луча будет близким к направлению падающего луча, как того и требует закон.

Закон отражения, как любой закон природы, был получен на основании наблюдений и опытов. Можно его вывести и теоретически — формально он является следствием принципа Ферма (но это не отменяет значимости его экспериментального обоснования).

Ключевым моментом в этом законе является то, что углы отсчитываются от перпендикуляра к поверхности в точке падения луча. Для плоской поверхности, например, плоского зеркала, это не столь важно, поскольку перпендикуляр к ней направлен одинаково во всех точках. Параллельно сфокусированный световой сигнал — например, свет автомобильной фары или прожектора, — можно рассматривать как плотный пучок параллельных лучей света. Если такой пучок отразится от плоской поверхности, все отраженные лучи в пучке отразятся под одним углом и останутся параллельными. Вот почему прямое зеркало не искажает ваш визуальный образ.

Однако имеются и кривые зеркала. Различные геометрические конфигурации поверхностей зеркал по-разному изменяют отраженный образ и позволяют добиваться различных полезных эффектов. Главное вогнутое зеркало телескопа-рефлектора позволяет сфокусировать в окуляре свет от далеких космических объектов. Выгнутое зеркало заднего вида автомобиля позволяет расширить угол обзора. А кривые зеркала в комнате смеха позволяют от души повеселиться, разглядывая причудливо искаженные отражения самих себя.

Закону отражения подчиняется не только свет. Любые электромагнитные волны — радио, СВЧ, рентгеновские лучи и т. п. — ведут себя в точности так же. Вот почему, например, и огромные принимающие антенны радиотелескопов, и тарелки спутникового телевидения имеют форму вогнутого зеркала — в них используется всё тот же принцип фокусировки поступающих параллельных лучей в точку.

elementy.ru

Смотрите так же:

  • 2 гражданское дела а 4 2 гражданское дела а 4 Судебная защита в порядке гражданского судопроизводства осуществляется судами общей юрисдикции, в т.ч. мировыми судьями (ст. 23-27 ГПК), а также арбитражными (ст. 22 АПК) и третейскими судами […]
  • Нотариус москвы южный округ Нотариусы округа Москвы Южный округ (ЮАО) Ниже представлен список нотариусов в выбранной категории. Чтобы посмотреть подробную информацию по конкретному нотариусу, кликните по ФИО нотариуса. Нотариус Абдулина Назия Абдульхаковна Телефон: […]
  • Расшифровка подписи оформлена правильно Реквизит 22 – подпись Подпись – реквизит, содержащий собственноручную роспись должностного или физического лица. 1 В состав реквизита "Подпись" (реквизит 22) входят: наименование должности лица, подписавшего документ (полное, если […]
  • Закон о совете министров 1992 Закон РСФСР от 3 августа 1979 г. "О Совете Министров РСФСР" (утратил силу) Закон РСФСР от 3 августа 1979 г. "О Совете Министров РСФСР"*(1) Постановлением ВС РФ от 22 декабря 1992 г. N 4175-1 настоящий Закон признан утратившим силу со дня […]
  • Какой вид законов не предусмотрен конституцией рф Закон в системе источников конституционного права Система действующих в национальной правовой системе законов отличается предметом регулирования, формой, юридической силой и др. Виды законов в Российской Федерации - по юридической силе, […]
  • Правил еэк оон 14 Правила ЕЭК ООН N 14 "Единообразные предписания, касающиеся официального утверждения транспортных средств в отношении креплений ремней безопасности, систем креплений ISOFIX и креплений верхнего страховочного троса ISOFIX" (с изменениями и […]

Обсуждение закрыто.