Законы механической картины мира

Механистическая (механическая) картина мира.

Принципы построения «Начал», где изложена механистическая картина мира, Ньютон заимствовал у Евклида: сначала формулируются аксиомы, или законы, затем из них выводятся следствия, которые можно проверить на опыте. Декарт развивал гипотетическую физику, в основе которой лежали умозрительные предположения, на следующие непосредственно из опыта. Физика принципов Ньютона основана на введении аксиом, которые могут не иметь логического обоснования, но истинность, которых доказывается опытом.

Символом метафизики Ньютона является сформулированный им основной закон динамики:

F – сила, действующая на тело с массой m, a – ускорение, которое она сообщает этому телу. В этой формуле введены три метафизические категории: во-первых, масса как мера инертности тел, во-вторых, сила – фактор, который изменяет состояние покоя ил равномерного и прямолинейного движения, и ускорение – характеристика свойств пространства и времени.

Эти свойства, согласно Ньютону, парадоксальны: речь идет об абсолютно пустом пространстве и абсолютном времени.

Введенная Ньютоном в законе всемирного тяготения сила гравитации также явилась метафизической категорией: речь шла о мгновенном взаимодействии тел, передаваемом на любые расстояния, причем без каких-либо посредников. Это был загадочный принцип дальнодействия. Декарт пытался снять проблему, заполнив пространство эфирными вихрями. Ньютон опроверг эту гипотезу как необоснованную: «причины свойств силы тяготения я до сих пор не смог вывести из явлений. Гипотез же я не измышляю».

Позднее стало ясно, что для гравитации и других сил можно ввести понятие потенциала, определенного в каждой точке пространства. А это уже понятие поля, которое и можно рассматривать в качестве переносчика взаимодействия. Ключевыми метафизическими категориями в механистической картине мироздания были понятия массы и инерции. Загадкой, не имевшей никакого объяснения, оставалось равенство гравитационной и инертной масс, которое с высокой точностью было доказано в конце XVIII в. в опытах Г. Кавендиша. Что касается инерции, то Ньютон мог дать о ее природе всего лишь тавтологический комментарий: «врожденная сила материи есть присущая ей потребность сопротивления, по которой всякое отдельно взятое тело, поскольку оно предоставлено самому себе, удерживает свое состояние покоя или равномерного и прямолинейного движения».

В этих достаточно неясных рассуждениях скрывалась еще одна метафизическая тонкость: по существу речь шла о состоянии покоя или равномерного и прямолинейного движения относительно абсолютного пространства, причем в абсолютном времени. Существовал только один способ определить систему координат, связанную с абсолютным пространством, — связать ее со сферой неподвижных звезд. Во времена Ньютона это могло казаться приемлемым, но для нас лишено смысла. Пространство и время в классической картине мира – абсолютно самодостаточные категории, существующие безотносительно чего-либо и никак не зависящие от присутствия в них материй.

Абсолютно пустое пространство механистической картины мира обладает свойствами однородности и изотропности, откуда следуют законы симметрии: изменение координат или их поворот не влияют на законы механики. В 1918 г. Э.Нетер показал, что отсюда следуют м6еханические законы сохранения импульса mv и момента импульса mv2. Что касается закона сохранения кинетической энергии mv2 / 2, то он является следствием равномерности хода часов абсолютного времени.

Попытку объяснить свойство инерции предпринял Э.Мах., связав его с влиянием далеких звезд. Но это было объяснение ad hoc: речь шла о мгновенном воздействии на межзвездных расстояниях.

При всей своей загадочности инерция имела совершенно ясную количественную меру – массу. Со времен Ньютона ее принято рассматривать как основную характеристику материи. Напомним, что согласно Аристотелю, материя не поддается количественному описанию, т.к. представляет собой изменчивую и текучую субстанцию, а по Декарту материя-это протяженный континуум, заполняющий все пространство и доступный математическому описанию. Существовала и еще одна точка зрения на сущность материи, которую отстаивал противник Декарта и сторонник материалистического сенсуализма П.Гассенди: материя состоит из атомов, обладающих свойствами неделимости, неизменности, тяжести и разделенных бестелесной пустотой. Близкую позицию занимал и ХР. Гюйгенс, который утверждал, что материя, состоящая из атомов, и пространство разделены, а действия на расстоянии быть не может.

Физическая модель мироздания, построенная в рамках механистического мировоззрения, явилась плодом свободного творения человеческого разума. Это была превосходная материалистическая модель, позволяющая решать большое количество практических задач, включая освоение космического пространства, и в наше время.

www.ifilosofia.ru

Механическая картина мира

Формирование механической картины мира (МКМ) происходило в течение нескольких столетий до середины девятнадцатого века под сильным влиянием взглядов выдающихся мыслителей древности: Демокрита, Эпикура, Аристотеля, Лукреция и др. Она явилась необходимым и очень важным шагом на пути познания природы.

Имена учёных, внесших основной вклад в создание МКМ: Н.Коперник, Г.Галилей, Р.Декарт, И.Ньютон, П.Лаплас и др.

Рис. 5.28.1. Гелиоцентрическая система

Николай Коперник был первым человеком, сумевшим нанести сокрушительный удар по геоцентрическим системам мира. В мае 1543 года увидела свет его книга «О вращениях небесных сфер». Учение Коперника противоречило церковным воззрениям на устройство мира и сыграло огромную роль в истории мировой науки.

Основоположником механической картины мира по праву считается Галилео Галилей (Galilei) (1564-1642), итальянский ученый, один из основателей точного естествознания. Всеми своими силами он боролся против схоластики, считая единственно верной основой познания опыт. Деятельность Галилея не нравилась церкви, он был подвергнут суду инквизиции (1633), вынудившей его отречься от своего учения. До конца жизни Галилей был принужден жить под домашним арестом на своей вилле Арчетри близ Флоренции. И только в 1992 году папа Иоанн Павел II реабилитировал Галилея и объявил решение суда инквизиции ошибочным. В годы детства и юности Галилея в науке господствовали представления об окружающем мире, сохранившиеся со времён античности. И Галилей был одним из первых, кто отважился выступить против них. Механическая картина мира возникла, когда главным критерием истины был признан опыт, а для описания явлений природы стали активно применять математику. Многие ставшие догмой утверждения Аристотеля не выдерживали проверки опытом. Аристотель, например, утверждал, что скорость падения тел пропорциональна их весу. Галилей в присутствии многочисленных свидетелей проводил наблюдения за падением с Пизанской башни тел различной массы (например, мушкетной пули и пушечного ядра). Оказалось, что скорость падения тел не зависит от их массы. Важнейшим достижением Галилея было открытие принципа относительности. Галилей сконструировал первый в мире термоскоп, который явился прообразом термометра. Направив подзорную трубу в небо, он сделал несколько выдающихся астрономических открытий: спутники Юпитера, фазы Венеры, строение Млечного Пути, солнечные пятна, кратеры и горы на Луне. Наблюдения за движением небесных тел сделали его убеждённым сторонником гелиоцентрической системы (рис.5.28.1). Открытия Галилея подрывали доверие к официальным взглядам на строение мира, пропитанным религиозными догмами.

Рене Декарт (Descartes, или Cartesius, 1596-1650), французский философ, математик, физик и физиолог, заложивший основы аналитической геометрии, определивший понятия переменной величины и функции, предположил существование закона сохранения количества движения, положил в основу своих построений принцип несотворимости и неуничтожимости движения. При этом все формы движения он сводил к механическому перемещению тел.

Исаак Ньютон (Newton) (1643-1727), английский математик, механик, астроном и физик, разработал (независимо от Г. Лейбница) дифференциальное и интегральное исчисления. Он построил первый в мире зеркальный телескоп, чётко сформулировал основные законы классической механики, открыл закон всемирного тяготения, сформулировал теорию движения небесных тел, создав основы небесной механики. Пространство и время в механике Ньютона являются абсолютными. Следует сказать, что работы Ньютона в механике, оптике и математике намного опередили его время, а многие его работы актуальны и сейчас. На языке Ньютона говорит вся современная наука.

Статьи и публикации:

Вредители гибискуса
Гибискус довольно выносливое растение, которое может простить некоторые погрешности в уходе, если они не носят систематический характер, но если растение не поливать регулярно и допускать пересыхания почвы, поместить в помещение с сухим т .

Промбриональный и эмбриональный периоды
Проэмбриональный (от греч. pro — до, embryon — зародыш) период в индивидуальном развитии организмов связан с образованием половых клеток в процессе гаметогенеза. Как отмечено выше, мужские половые клетки животных по своей структуре не име .

Передача генетического материала посредством трансдукции
Трансдукция — передача генетического материала от одной бактерии (донора) другой (реципиенту) с помощью умеренных бактериофагов. Открыта в 1952 Дж. Ледербергом и Н. Циндером при анализе причин изменения наследств, признаков у некоторых шт .

www.bioinside.ru

Законы механической картины мира

Галилео Галилей выступил также противником механики и астрономии Аристотеля. Он опровергал учение Аристотеля о том, что тяжелые тела падают быстрее, чем легкие. Изучая кинематику движения тел, он впервые использовал понятие инерции. Согласно господствовавшей тогда аристотелевской концепции понятие инерции не существовало и считалось, что всякое движение, кроме естественного, требует непрекращающегося воздействия, и прекращение воздействия приводит к немедленному прекращению движения. Галилей выступил против такой концепции.

Используя понятие инерции, Галилей объяснил, почему Земля при обращении вокруг Солнца и вращении вокруг своей оси сохраняет как атмосферу, так и все, что находится в атмосфере и на земной поверхности. Здесь проявился открытый Галилеем принцип относительности для механических явлений, известный как принцип относительности Галилея и утверждающий, что если законы механики справедливы в одной системе координат, то они справедливы и в любой другой системе координат, движущейся прямолинейно и равномерно относительно первой, т.е. в инерциальных системах отсчета. В другой формулировке закон звучит так: никакими опытами, проведенными в инерциальной системе отсчета, нельзя доказать, покоится система отсчета или движется! равномерно и прямолинейно. Все законы механики во всех инерциальных системах отсчета проявляются одинаково, в них пространство и время носят абсолютный характер, т.е. интервал времени и размеры тел не зависят от состояния движения системы отсчета[2].

Одновременно с законом инерции Галилей использовал и другое основное положение классической механики — закон независимости действия сил. Он применил его к движению тел в поле силы тяжести Земли.

В своих философских воззрениях, опирающихся на естественнонаучные выводы, Галилей стоит на позициях новой основанной им механической натурфилософии, механистического естествознания.

Он исходит из признания бесконечной и вечной Вселенной, всюду единой. Утверждает, что небесный мир состоит из таких же физических тел, как и Земля. Все явления природы, по его мнению, подчиняются одинаковым законам механики. Сама материя как реальная субстанция вещей состоит из абсолютно неизменных атомов (здесь Галилей опирается на атомизм Демокрита); всевозможные ее проявления сводятся к чисто количественным свойствам, поэтому все в природе можно измерить и вычислить; движение материи выступает в единой, универсальной механической форме. Во всех явлениях природы, по представлениям Галилея, обнаруживается строгая механическая причинность, поэтому в отыскании причин явлений и познании их внутренней необходимости состоит основная, подлинная цель науки, «высшая ступень знания».

Источником познания, по Галилею, является опыт. Он осуждал схоластику, оторванную от действительности и опирающуюся исключительно на авторитеты. Метод научного исследования Галилея сводился к тому, что из наблюдений и опытов устанавливается предположение — гипотеза, проверка которой на практике дает физический закон. В основных чертах этот метод стал методом естествознания.

До Галилея физика и математика существовали порознь. Он связал физику, объясняющую характер и причины движения, и математику, позволяющую описать это движение, т.е. сформулировать его закон. Как один из основателей классической механики, Галилей сделал два принципиально важных шага: обратился к физическому опыту и связал физику с математикой.

При разработке своей системы мира Коперник исходил из предположения, что Земля и планеты обращаются вокруг Солнца по круговым орбитам. Чтобы объяснить сложное движение планет по эклиптике, ему пришлось ввести в свою систему 48 эпициклов. И лишь благодаря усилиям немецкого астронома Иоганна Кеплера система мира Коперника приобрела простой и стройный вид. Кеплер совершил следующий шаг — открыл эллиптическую форму орбит и три закона, движения планет вокруг Солнца. Первые два закона Кеплера были опубликованы в 1609 г., третий — в I 1619 г. Наиболее важным для понимания общего устройства Солнечной системы был первый закон, утверждавший, что планеты обращаются вокруг Солнца по эллиптическим орбитам, а Солнце находится в фокусе одного из этих эллипсов. В свое время греки предполагали, что все небесные тела должны двигаться по кругу, потому что круг — самая совершенная из всех кривых. Хотя греки знали многое об эллипсах и их математических свойствах, они не дошли до понимания того, что, небесные тела могут двигаться как-то иначе, нежели по кругам или сложным сочетаниям кругов. Кеплер первым отважился высказать такую идею. Его законы имели решающее значение в истории науки прежде всего потому, что они способствовали доказательству закона тяготения Ньютона.

Кеплер настаивал на физическом объяснении явлений природы, не признавал теологических представлений (например, он доказывал, что кометы являются материальными телами), а также антропоморфного понимания природы, наделения ее духоподобными силами, выступал против алхимиков и астрологов.

Учение Кеплера о законах движения планет имело огромное значение для формирования естественнонаучной картины мира, i открывало путь к поиску более общих законов механического движения материальных тел и систем.

В трудах современников Галилея и Кеплера итальянского физика и математика Эванджелисты Торричелли (1608-1647 гг.) и французского математика, физика и философа Блеза Паскаля (1623-1662 гг.) развивалась экспериментальная физика. Кроме решения задачи о движении тела, брошенного под углом к гори-1 зонту, Торричелли впервые экспериментально доказал существование атмосферного давления в опытах с трубками со ртутью. Паскаль вошел в историю физики как автор закона о всесторонней равномерной передаче давления жидкости, закона сообщающихся сосудов и теории гидравлического пресса.

Становление и дальнейшее развитие механики зависело от математических описаний физических закономерностей, и в этом направлении необходимо выделить работы французского ученого] Рене Декарта (1596-1650 гг.). Декарт заложил основы аналитической геометрии, применил ее аппарат к описанию перемещения тел, разработал понятия переменной величины и функции [3]. Я «Началах философии», опубликованных в 1644 г., Декарт сформулировал три закона природы. Первые два выражают принцип инерции, в третьем формулируется закон сохранения количества движения. В познании мира Декарт ставил на первое место проницательность ума. Он считал, что с помощью логических рассуждений можно построить картину мира. Последователей Декарта называли картезианцами (Картезий — латинизированное имя Декарта).

В мире Декарта материя тождественна пространству, все пространство заполнено материей, пустоты нет. Атомы отрицаются, материя делима до бесконечности. Все явления Декарт сводил к механическим перемещениям. Все взаимодействия осуществляются через давления, столкновения — одни части материи давят на другие, толкают их. Весь мир заполнен вихревыми движениями (движениями по кругу). Беспредельная делимость материи у Декарта не вполне последовательно сочетается с существованием «частиц материи». У Декарта имеются три типа таких частиц: вездесущие частицы неба, частицы огня и частицы плотной материи. Движение производится силой, исходящей от Бога. Эта же сила делит непрерывную материю на части и частицы и сохраняется в них, являясь источником их кругового (вихревого) движения, при котором одни частицы выталкиваются со своих мест другими.

Велика роль французского ученого и в развитии астрономии, Вселенная рассматривалась им как саморазвивающаяся система. Первоначально она находилась в хаотическом состоянии, затем движение частиц материи приобрело характер центробежных вихревых движений, в результате которых образовались небесные тела, включая Солнце и планеты. Таким образом, возникновение Солнечной системы и всей Вселенной происходит, по Декарту, без божественного вмешательства, на основе законов природы. «Бог так чудесно установил эти законы, что даже если предположить, что он не создал ничего, кроме сказанного (т.е. материи и движения), и не внес в материю никакого порядка, никакой соразмерности, а, наоборот, оставил лишь самый невообразимый хаос. то и в таком случае этих законов было бы достаточно, чтобы частицы хаоса сами распутались и расположились в таком прекрасном порядке, что они образовали бы весьма совершенный мир»[4].

Учение Декарта явилось единой наукой. Как и философы древности, Декарт включил в свое учение натурфилософию. Однако в основу своей натурфилософии Декарт положил механику, и она носила механический односторонний характер, что было характерно для естествознания того времени. Декарта можно считать основоположником принципа близкодействия в физике. Вол новая теория света, теория электромагнитного поля, молекулярная физика являются развитием идей Декарта. Действительно, в трудах многих крупнейших физиков XIX в. можно найти идеи, которые являются развитием идей Декарта, высказанных им еще в XVII в.

Период формирования и становления естественных наук приходится примерно на XVII в.: начинается он с работ Галилея и заканчивается исследованиями Ньютона.

Галилей и Кеплер, исходя из динамических и кинематических законов Аристотеля, переосмысливали его механику и в итоге перехода от геоцентризма к гелиоцентризму пришли к своим кинематическим законам. Эти законы предопределили принципиально единую для земных и небесных тел механику Ньютона со всеми сформированными им классическими законами механики, включая закон всемирного тяготения. Галилей, изучая свободное падение тел, первым ввел понятие инерции и сформулировал принцип относительности для механических движений, известный как принцип относительности Галилея. Решающий вклад в становление механики внес английский физик Исаак Ньютон (1643-1727 гг.)

Стройную логическую систему физической картине мира придали законы механики, полученные Ньютоном и изложенные в его гениальной работе «Математические начала натуральной философии» (кратко — «Начала») в 1687 г. [5]. Ньютон больше, чем кто-либо из других мыслителей его поколения, внес в научную картину мира не только нового содержания, но и принципиально новый стиль однозначного объяснения природы. Ньютон создал основы теории гравитационного поля, вывел закон тяготения, определяющий силу тяготения, которая действует на данную массу в любой точке пространства, если заданы масса и положение тела, служащего источником сил тяготения, т.е. притягивающего к себе другие тела.

Динамические законы Ньютона не только следуют из соответствующих кинематических законов Галилея и Кеплера, но и сами могут быть положены в основу всех трех кинематических законов Кеплера и обоих кинематических законов Галилея, а также всевозможных теоретически ожидаемых отклонений от них из-за сложного строения и взаимных гравитационных возмущений взаимодействующих тел.

И. Ньютон полагал, что мир состоит из корпускул, образующих тела и заполняющих пустоты между ними. Установив закон всемирного тяготения, Ньютон не дал объяснения причин тяготе и механизма передачи взаимодействия. Молодой Ньютон считал, что взаимодействие через пустоту осуществляет Бог. Позднее он приходит к гипотезе эфира как переносчика взаимодействия.

Период становления механики со временем превратился в период ее торжества. Механика стала основой мировоззрения. Все, что создал сам человек, все, что есть в природе, имеет, считалось, единую механическую сущность. Этому способствовали и дальнейшие открытия в естествознании, особенно в астрономии более позднего периода.

формирование механистической картины мира потребовало несколько столетий и завершилось лишь к середине XIX в. Ее следует рассматривать как важный этап в становлении естественнонаучной картины мира.

В этой системе мира вещества состоят из атомов и молекул, находящихся в непрерывном движении. Взаимодействия между телами происходят при непосредственном контакте (при действии сил упругости и трения) и на расстоянии (при действии сил тяготения). Пространство заполнено всепроникающим эфиром. Взаимодействие атомов рассматривается как механическое. Нет понимания сущности эфира. Согласно механистической картине мира гравитационные силы связывают все без исключения тела природы, они являются не специфическим, а общим взаимодействием. Законы тяготения определяют отношение материи к пространству и всех материальных тел друг к другу. Тяготение создает в этом смысле реальное единство Вселенной. Объяснение характера движения небесных тел и даже открытие новых планет Солнечной системы было триумфом ньютоновской теории тяготения. ч Механистическая картина мира была основана на следующих четырех принципах.

1. Мир строился на едином фундаменте — на законах механики Ньютона. Все наблюдаемые в природе превращения, а также тепловые явления на уровне микроявлений сводились к механике атомов и молекул, их перемещениям, столкновениям, сцеплениям, разъединениям. Считалось, что открытие в середине XIX в. Закона сохранения и превращения энергии также доказывало механическое единство мира.

2. В механистической картине мира все причинно-следственные связи однозначные, здесь господствует лапласовый детерминизм. В мире существует точность и возможность предопределения будущего.

3. В механистической картине мира отсутствует развитие — в целом таков, каким он был всегда. Механистическая картина мира фактически отвергала качественные изменения, сводя все к чисто количественным изменениям.

4. Механистическая картина исходила из представления, что микромир аналогичен макромиру. Считалось, что механика микромира может объяснить закономерности поведения атомов и молекул.

По своей сути эта картина мира являлась метафизической, все многообразие мира сводилось к механике, качественное развитие, как и все происходящее в мире, представлялось строго предопределенным и однозначным.

Метафизические взгляды на картину мира приводили и самого Ньютона к постоянному отступлению от естественнонаучного мировоззрения и к объяснению явлений сверхъестественными силами, т.е. вмешательством бога. Ньютон полагал, что Солнечная система от века существует такой, какой мы ее знаем сейчас. Но в таком случае начальное положение планеты на орбите и ее начальная скорость не находят физического объяснения. По Ньютону, планеты получили начальную скорость в виде толчка от бога. Устойчивость Солнечной системы также не находит своего объяснения с помощью одних только сил тяготения, и Ньютон оставляет здесь место действию божественных сил.

Таким образом, Ньютонова концепция сил отводила определенную роль в природе богу, в отличие от картезианской физики, которая каждое явление объясняла специальной моделью вихря и согласно которой бог, однажды создав природу, уже больше в нее не вмешивается. В философских моделях мировоззрения это нашло глубокое отражение во всей противоречивости и сложности, присущей духовному миру человека в эпоху освобождения от путсхоластики.

Естественнонаучная картина мира в собственном смысле слова, как мы уже отметили, начинает формироваться только в эпоху возникновения научного естествознания в XVI-XVII вв. Анализируя процесс перестройки сознания в эпоху XVI-XVII вв., западный исследователь экстерналистского направления Э. Цильзель считает, что становление новых буржуазных экономических отношений, пронизанных духом рационализма, привело к постепенному ослаблению религиозного, магического восприятия мира и укреплению рациональных представлений о мироздании. А поскольку развитие производства потребовало развития механики, то картина мира данной эпохи приобрела механистический характер.

В истории научного знания классическая механика была новой теоретически развитой областью естествознания, ставшей основой л механистической картины мира. Механистическая картина мира была и остается тем началом, на котором основываются последующие картины мира, опирающиеся на успехи синергетики или идеи глобального эволюционизма.

Одной из характерных черт общенаучной картины мира является то, что ее основой выступает картина мира той области познания, которая занимает лидирующее положение в данный исторический период. В XVII-XVIII вв. лидирующее положение среди наук занимала механика, поэтому естественнонаучная картина мира получила название механистической. Законы механики распространялись также на общество и на человека.

  1. Галилей Г. Диалог о двух системах мира //Галлией Избр. Тр. М., 164. Т.1.
  2. Беседы и математические доказательства //Там же Т.2.
  3. Декарт Р. Избранные произведения. М., 1950.
  4. Декарт Р. Сочинения 13, Т.2. М.: Мысль, 1989.
  5. Ньютон И. Математические начала натуральной философии. Пер. А.Н. Крылова //Изв. Николаев мор. акад. 1915. Вып.4.

www.top-technologies.ru

ХАРАКТЕРНЫЕ ОСОБЕННОСТИ МЕХАНИЧЕСКОЙ КАРТИНЫ МИРА

Популяризация идей механики Ньютона связана с именем французского философа Вольтера (1694-1778). При его активном участии работа Ньютона «Математические начала натуральной философии» была переведена с латинского языка на французский. Затем Вольтер написал популярное изложение механики Ньютона под названием «Элементы учения Ньютона». Механика Ньютона представлялась ему образцом человеческого творчества, проникающего в глубины тайн устройства природы. Популяризация механики Ньютона способствовала возникновению механической картины мира. Механическая картина мира – это система взглядов, согласно которой мир, Вселенная является высокоточной, отлаженной системой машин, действующей по законам механического движения. В основе механической картины мира лежит гипотеза о существовании атомов, а также принцип детерминизма. Исходным физическим понятием в этой картине мира является вещество, локализованное в пространстве и состоящее из атомов.

Перечислим характерные особенности механической картины мира.

1) Сила тяготения является дальнодействующей и распространяется с бесконечной скоростью без соприкосновения с взаимодействующими телами.

2) Сила тяготения не действует на свет, на его траекторию движения.

3) Все механические процессы подчиняются принципу детерминизма, суть которого состоит в признании возможности точного и однозначного определения состояния механической системы по предыдущему состоянию, т.е. случайность целиком исключается.

4) Математическая теория пространства Евклида правильно отражает метрику пространства при механическом движении: два прямолинейно и параллельно движущихся тела никогда не пересекутся в своем движении на просторах Вселенной.

5) Часы, установленные на движущемся теле, не замедляют и не ускоряют свой ход.

6) Величина массы остается неизменной в механическом движении тел.

7) В мире возможны одновременные события, так как время – это абсолютная математическая длительность, мера определения движения тел в пространстве.

Три закона Ньютона предполагают определенную природу пространственных и временных промежутков. Ньютон различал абсолютное и относительное время. По Ньютону истинное время абсолютно, ни от чего не зависит и протекает равномерно. Для измерения любых промежутков времени достаточно иметь одни часы, ход которых должен быть равномерным.

В своих «Математических началах натуральной философии» он писал: «Абсолютное, истинное математическое время само по себе и по своей сущности без всякого отношения к чему-либо внешнему, протекает равномерно и иначе называется длительностью. Относительное, кажущееся или обыденное время есть или точная, или изменчивая, постигаемая чувствами внешняя, совершаемая при посредстве какого-либо движения, мера продолжительности, употребляемая в обыденной жизни вместо истинного математического времени, как то: час, день, месяц. Течение абсолютного времени изменяться не может. Длительность или продолжительность существования вещей одна и та же, быстры движения или медленны, или их совсем нет».

Пространство Ньютон также считал абсолютным, оно везде является одним и тем же. Это означает, что для измерения длин надо использовать недеформируемые твердые тела с нанесенными на них делениями. «Время и пространство составляет как бы вместилище самих себя и всего существующего».

Ритм Вселенной одинаков в каждой точке Вселенной и по всем ее направлениям.

Триумфом механики Ньютона стали открытия астрономов. В 1781 году была открыта планета Уран, в 1846 – Нептун, в 1930 – Плутон. Каждому из этих астрономических открытий предшествовали вычисления на основе закона всемирного тяготения Ньютона.

Научное творчество Ньютона сыграло исключительно важную роль в истории развития физики. По словам Альберта Эйнштейна, «Ньютон был первым, кто попытался сформулировать элементарные законы, которые определяют временной ход широкого класса процессов в природе с высокой степенью полноты и точности» и «оказал своими трудами глубокое и сильное влияние на всё мировоззрение в целом».

studopedia.ru

Механическая картина мира

Становление механической картины мира связывают, как уже отмечалось выше, с именами Галилея, Декарта и Ньютона. Формирование механической картины мира потребовало нескольких столетий; практически оно завершилось лишь в середине XIX в. Механическая картина мира возникла на основе классической механики, обобщения законов движения свободно падающих тел и движения планет, а также создания методов количественного анализа механического движения в целом. Эту картину следует рассматривать как важную ступень в познании человеком окружающего мира.

Основу механической картины мира составляет идея атомизма: все тела (твердые, жидкие, газообразные) состоят из атомов и молекул, находящихся в непрекращающемся тепловом движении. Взаимодействие тел происходит как при их непосредственном контакте (трение, силы упругости), так и на расстоянии (силы тяготения). Все пространство заполняет всепроникающий эфир — среда, в которой распространяется свет. Атомы рассматриваются как некие цельные, неделимые «кирпичики»; сцепляясь друг с другом, они образуют молекулы и в конечном счете все тела. Природа этого сцепления не исследовалась, сущность эфира не рассматривалась.

Эта картина мира основана на четырех принципиальных представлениях.

1. Мир представлялся построенным на едином фундаменте — на законах механики Ньютона. Все наблюдаемые превращения в природе, а также тепловые явления сводились на уровне микроявлений к механике атомов и молекул.

2. Механическая картина мира исходила из представлений, что микромир аналогичен макромиру.

3. В механической картине мира отсутствовало развитие, т.е. мир считался в целом таким, каким он был всегда.

4. В механической картине мира все причинно-следственные связи считались однозначными, здесь господствовал детерминизм, согласно которому по известным начальным данным системы можно точно предсказать ее будущее.

Данное мировоззрение существовало в естествознании до середины второй половины XIX в. По сути эта картина мира является метафизической, поскольку в ней отсутствуют внутренние противоречия и качественное развитие, все происходящее в мире жестко предопределено, а все разнообразие мира сведено к механике. В механической картине мира понимание сводится к построению механической модели, изучение которой приводит к выводу о ее соответствии или несоответствии реальному объекту, процессу, явлению. В механической картине мира причинно все обусловлено (принцип детерминизма).

Однако развитие термодинамики трудами С. Карно, Р. Клаузиуса, Дж.К. Максвелла, Л. Больцмана и других существенно изменило представление о причинной обусловленности в материальном мире. Введение статистических законов на основе молекулярнокинетической теории привело к иному рассмотрению физической картины мира — вероятностно-механическому. Вероятностный подход отвергает необходимость детального знания движения каждой молекулы, так как общее поведение системы не определяется начальными условиями, присущими отдельным молекулам.

Н.С. Крылов сформулировал основные постулаты, выполнение которых в системе взаимодействующих молекул ведет к возникновению статистических законов на фоне индивидуальных взаимодействий по законам классической механики. Первый постулат выражает одинаковое статистическое значение результата измерения параметров одной системы в течение продолжительного времени и статистического результата одновременного измерения идентичных систем (принцип эргодичности). Этот результат чрезвычайно важен для стабильности результатов измерений, т.е. для повторяемости и воспроизводимости результатов измерений. Второй постулат устанавливает существование равновесного состояния, к которому с течением времени приходят идентичные статистические системы и в котором они будут находиться в последующем. Для такого состояния выполняется закон распределения молекул по скоростям, открытый Максвеллом. Третий постулат устанавливает для равновесного состояния максимальное значение энтропии. Случайные отклонения от этого состояния (флуктуации) тем менее вероятны, чем больше их величина.

studref.com

Смотрите так же:

  • Получит ли гражданство ребенок родившийся в россии Ребенок родился на территории РФ, а родители граждане другого государства У меня такой вопрос, я слышала, что если ребенок рождается на территории РФ, а его родители являются гражданами другого государства, в данном случае Таджикского, то […]
  • Something anything nothing правило Неопределенные местоимения в английском языке Употребление Some и any обозначают определенное количество и употребляются перед существительными во множественном числе, а также перед неисчисляемыми существительными. Причем some и его […]
  • Live lived правило Секреты английского языка Сайт для самостоятельного изучения английского языка онлайн Разница в употреблении to live, life, live, alive, living Posted on 2014-03-17 by admin in Всякая всячина // 6 Comments Слова live, life, live, alive, […]
  • Правило как вычесть числа с разными знаками Вычитание отрицательных чисел Как известно вычитание — это действие, противоположное сложению. Если « a » и « b » — положительные числа, то вычесть из числа « a » число « b », значит найти такое число « c », которое при сложении « с » […]
  • Many much any a lot of правило Английский язык: уроки онлайн Уровень Elementary Урок 1. Предложение в английском языке. Личные и притяжательные местоимения. Глагол to be. Число существительных. Тема 9. Much/many/a lot of в обороте there is/there are. […]
  • Законы сложения цветов Большая Энциклопедия Нефти и Газа Законы - сложение Законы сложения позволяют группировать члены многочлена любым способом. Иногда удается такая группировка, что после вынесения за скобку общих множителей в скобках разных групп остается […]

Обсуждение закрыто.