Закон гука выполняется при

Сила упругости: Закон Гука — формула

Как известно, физика изучает все законы природы: начиная от простейших и заканчивая наиболее общими принципами естествознания. Даже в тех областях, где, казалось бы, физика не способна разобраться, все равно она играет первоочередную роль, и каждый малейший закон, каждый принцип — ничто не ускользает от нее.

Именно физика является основой основ, именно эта наука лежит в истоках всех наук.

Физика изучает взаимодействие всех тел, как парадоксально маленьких, так и невероятно больших. Современная физика активно изучает не просто маленькие, а гипотетические тела, и даже это проливает свет на суть мироздания.

Физика поделена на разделы, это упрощает не только саму науку и понимание ее, но и методологию изучения. Механика занимается движением тел и взаимодействием движущихся тел, термодинамика — тепловыми процессами, электродинамика — электрическими.

Почему деформацию должна изучать механика

Говоря о сжатиях или растяжениях, следует задать себе вопрос: какой раздел физики должен изучать этот процесс? При сильных искажениях может выделяться тепло, быть может, этими процессами должна заниматься термодинамика? Иногда при сжатии жидкостей, она начинает кипеть, а при сжатии газов — образуются жидкости? Так что же, деформацию должна познавать гидродинамика? Или молекулярно-кинетическая теория?

Всё зависит от силы деформации, от ее степени. Если деформируемая среда (материал, который сжимают или растягивают) позволяет, а сжатие невелико, есть смысл рассматривать этот процесс как движение одних точек тела относительно других.

А раз вопрос касается сугубо движения, значит, заниматься этим будет механика.

Закон Гука и условие его выполнения

В 1660 году известный английский ученый Роберт Гук открыл явление, при помощи которого можно механически описать процесс деформаций.

Для того чтобы понимать при каких условиях выполняется закон Гука, ограничимся двумя параметрами:

Есть такие среды (например, газы, жидкости, особо вязкие жидкости, близкие к твердым состояниям или, наоборот, очень текучие жидкости) для которых описать процесс механически никак не получится. И наоборот, существуют такие среды, в которых при достаточно больших силах механика перестает «срабатывать».

Закон Гука, определение:деформация, которая возникает в теле, прямо пропорциональна силе, которая вызывает эту деформацию.

Естественно, это определение подразумевает, что:

  • сжатия или растяжения невелики;
  • предмет упругий;
  • он состоит из материала, при котором в результате сжатия или растяжения нет нелинейных процессов.

Закон Гука в математической форме

Формулировка Гука, которую мы привели выше, дает возможность записать его в следующем виде:

,

где — изменение длины тела вследствие сжатия или растяжения, F — сила, приложенная к телу и вызывающая деформацию (сила упругости), k — коэффициент упругости, измеряется в Н/м.

Следует помнить, что закон Гука справедлив только для малых растяжений.

Также отметим, что он при растяжении и сжатии имеет один и тот же вид. Учитывая, что сила — величина векторная и имеет направление, то в случае сжатия, более точной будет такая формула:

, но опять-таки, все зависит от того куда будет направлена ось, относительно которой вы проводите измерение .

В чем кардинальная разница между сжатием и растяжением? Ни в чем, если оно незначительно.

Степень применимости можно рассмотреть в таком виде:

Обратим внимание на график. Как видим, при небольших растяжениях (первая четверть координат) долгое время сила с координатой имеет линейную связь (красная прямая), но затем реальная зависимость (пунктир) становится нелинейной, и закон перестает выполняться. На практике это отражается таким сильным растяжением, что пружина перестает возвращаться в исходное положение, теряет свойства. При еще большем растяжении происходит излом, и разрушается структура материала.

При небольших сжатиях (третья четверть координат) долгое время сила с координатой имеет тоже линейную связь (красная прямая), но затем реальная зависимость (пунктир) становится нелинейной, и всё вновь перестает выполняться. На практике это отражается таким сильным сжатием, что начинает выделяться тепло и пружина теряет свойства. При еще большем сжатии происходит «слипание» витков пружины и она начинает деформироваться по вертикали, а затем и вовсе плавиться.

Как видим формула, выражающая закон, позволяет находить силу, зная изменение длины тела, либо, зная силу упругости, измерить изменение длины:

.

Также, в отдельных случаях можно находить коэффициент упругости. Для того, чтобы понять как это делается, рассмотрим пример задачи:

К пружине подсоединен динамометр. Ее растянули, приложив силу в 20 Ньютон, из-за чего она стала иметь длину 1 метр. Затем ее отпустили, подождали пока прекратятся колебания, и она вернулась к своему нормальному состоянию. В нормальном состоянии ее длина составляла 87, 5 сантиметров. Давайте попробуем узнать, из какого материала сделана пружина.

Найдем численное значение деформации пружины:

.

Отсюда можем выразить значение коэффициента:

Посмотрев таблицу, можем обнаружить, что этот показатель соответствует пружинной стали.

Неприятности с коэффициентом упругости

Физика, как известно, наука очень точная, более того, она настолько точна, что создала целые прикладные науки, измеряющие погрешности. Будучи эталоном непоколебимой точности, она не может себе позволить быть нескладной.

Практика показывает, что рассмотренная нами линейная зависимость, является ничем иным как законом Гука для тонкого и растяжимого стержня. Лишь в качестве исключения можно применять его для пружин, но даже это является нежелательным.

Оказывается, что коэффициент k — переменная величина, которая зависит не только от того из какого материала тело, но и от диаметра и его линейных размеров.

По этой причине, наши умозаключения требуют уточнений и развития, ведь иначе, формулу:

нельзя назвать ничем иным как зависимостью между тремя переменными.

Модуль Юнга

Давайте попробуем разобраться с коэффициентом упругости. Этот параметр, как мы выяснили, зависит от трех величин:

  • материала (что нас вполне устраивает);
  • длины L (что указывает на его зависимость от );
  • площади S.

Что нам известно:

  • чем больше площадь сечения тела, тем больше коэффициент k, причем зависимость линейная;
  • чем больше длина тела, тем меньше коэффициент k, причем зависимость обратно пропорциональная.

Значит, мы можем, коэффициент упругости записать таким образом:

,

причем Е — новый коэффициент, который теперь точно зависит исключительно от типа материала.

Введем понятие “относительное удлинение”:

.

Следует признать, что эта величина более содержательна, чем , поскольку она отражает не просто на сколько пружина сжалась или растянулась, а во сколько раз это произошло.

Поскольку мы уже «ввели в игру» S, то введем понятие нормального напряжения, которое записывается таким образом:

.

Измеряется нормальное сечение в Н/м2.

Тогда, закон можно записать в следующем виде:

,

подставим выражение для k:

,

перенесем S в левую часть, в знаменатель:

,

.

Таким образом, мы получили формулу, которая отражает связь между нормальным напряжением и относительным удлинением.

Видеоурок по физике «Силы упругости. Закон Гука»

Закон Гука и упругие деформации

Сформулируем закон Гука при растяжении и сжатии: при малых сжатиях нормальное напряжение прямо пропорционально относительному удлинению.

Коэффициент Е называется модулем Юнга и зависит исключительно от материала.

uchim.guru

Закон гука выполняется при

1.12. Сила упругости. Закон Гука

При деформации тела возникает сила, которая стремится восстановить прежние размеры и форму тела. Эта сила возникает вследствие электромагнитного взаимодействия между атомами и молекулами вещества. Ее называют силой упругости .

Простейшим видом деформации являются деформации растяжения и сжатия (рис. 1.12.1).

Закон Гука может быть обобщен и на случай более сложных деформаций. Например, при деформации изгиба упругая сила пропорциональна прогибу стержня, концы которого лежат на двух опорах (рис. 1.12.2).

Упругую силу действующую на тело со стороны опоры (или подвеса), называют силой реакции опоры . При соприкосновении тел сила реакции опоры направлена перпендикулярно поверхности соприкосновения. Поэтому ее часто называют силой нормального давления . Если тело лежит на горизонтальном неподвижном столе, сила реакции опоры направлена вертикально вверх и уравновешивает силу тяжести: Сила с которой тело действует на стол, называется весом тела.

В технике часто применяются спиралеобразные пружины (рис. 1.12.3). При растяжении или сжатии пружин возникают упругие силы, которые также подчиняются закону Гука. Коэффициент k называют жесткостью пружины . В пределах применимости закона Гука пружины способны сильно изменять свою длину. Поэтому их часто используют для измерения сил. Пружину, растяжение которой проградуировано в единицах силы, называют динамометром . Следует иметь в виду, что при растяжении или сжатии пружины в ее витках возникают сложные деформации кручения и изгиба.

В отличие от пружин и некоторых эластичных материалов (резина) деформация растяжения или сжатия упругих стержней (или проволок) подчиняются линейному закону Гука в очень узких пределах. Для металлов относительная деформация ε = x / l не должна превышать 1 % . При больших деформациях возникают необратимые явления (текучесть) и разрушение материала.

physics.ru

Закон гука выполняется при

Задание 5. Зависимость модуля силы упругости резинового жгута F от удлинения х изображена на графике. Период малых вертикальных свободных колебаний груза массой m, подвешенного на резиновом жгуте, равен Т0.

Выберите два утверждения, соответствующих данному графику.

1) Для удлинения жгута закон Гука выполняется при всех используемых в опыте массах грузов.

2) Частота свободных колебаний груза сначала увеличивается, а затем уменьшается.

3) При увеличении массы груза период его вертикальных свободных колебаний на резиновом жгуте увеличивается.

4) Период Т малых вертикальных свободных колебаний груза массой 4m на этом жгуте удовлетворяет соотношению Т > 2Т0.

5) Период Т малых вертикальных свободных колебаний груза массой 4m на этом жгуте удовлетворяет соотношению Т

1) Закон Гука записывается как , где k – коэффициент упругости. Эта формула показывает, что для выполнения закона Гука при всех массах груза, зависимость силы F от удлинения x должна быть линейной. Однако на графике видим кривую, следовательно, закон Гука не соблюдается для всех масс грузов.

2) Частота свободных вертикальных колебаний резинового жгута определяется формулой . Из этой формулы следует, что частота колебаний с увеличением массы грузов будет уменьшаться.

3) Период вертикальных колебаний равен и при увеличении массы груза период будет увеличиваться.

4) Если бы закон Гука соблюдался для всех масс, то период колебаний груза массой 4m был бы равен

.

Однако кривая зависимости выгнута вверх относительно линейного графика, соединяющая точку 0 и F=4mg. Эта выгнутость дает меньшие деформации для груза массой m, и большие для груза массой 4m. Поэтому коэффициент жесткости k при 4m будет меньше, чем при m и, следовательно, период .

5) Из п. 4 следует, что .

self-edu.ru

Закон гука выполняется при

Источник задания: Вариант 16. Задание 5. ЕГЭ 2017. Физика. Демидова М. Ю. 30 вариантов. Решение

Задание 5. В лабораторных опытах по изучению закона Гука резиновый жгут прикрепили к штативу, затем стали подвешивать к нему грузы разной массы и измерять линейкой удлинение жгута. Результаты опытов с учётом погрешностей представлены в таблице.

Масса груза m, г

Удлинение жгута ∆l, см

Выберите два утверждения, соответствующих результатам этих опытов, и укажите их номера.

1) Закон Гука выполняется для всех шести опытов.

2) Жёсткость жгута увеличивается с увеличением массы груза.

3) Закон Гука выполняется только для первых трёх опытов.

4) Жёсткость жгута для первых трёх опытов равна 20 Н/м.

5) Жёсткость жгута равна 40 Н/м.

1) Закон Гука записывается в виде , где k – жесткость жгута. При этом, сила F будет равна силе тяжести, создаваемая грузом массой m, то есть F=mg и тогда

,

.

Проверим, жесткость жгута для всех шести опытов:

Из результатов видно, что закон Гука выполняется только для первых трех опытов.

2) По результатам вычислений п. 1 видно, что жесткость жгута уменьшается с увеличением массы грузов.

3) В п. 1 показано, что это так.

4) Жёсткость жгута для первых трёх опытов равна 20 Н/м.

self-edu.ru

Закон Гука

Если на тело воздействовать некоторой силой, то его размер и (или) форма изменяются. Это процесс называют деформацией тела. В телах, подвергающихся деформациям, возникают силы упругости, уравновешивающие внешние силы.

Виды деформации

Все деформации можно разделить на два вида: упругие деформации и пластические.

Упругой называют деформацию, если после снятия нагрузки прежние размеры тела и его форма полностью восстанавливаются.

Пластической считают деформацию, при которой появившиеся, вследствие деформации, изменения размера и формы тела, после снятия нагрузки восстанавливаются частично.

Характер деформации зависит от

  • величины и времени воздействия внешней нагрузки;
  • материала тела;
  • состояния тела (температуры, способов обработки и т.д).

Резкой границы между упругой и пластической деформациями не существует. В большом числе случаев малые и кратковременные деформации можно считать упругими.

Формулировки закона Гука

Эмпирически получено, что чем большую деформацию необходимо получить, тем большую деформирующую силу следует приложить к телу. По величине деформации ($\Delta l$) можно судить о величине силы:

выражение (1) означает, что абсолютная величина упругой деформации прямо пропорциональная приложенной силе. Данное утверждение является содержанием закона Гука.

При деформации удлинения (сжатия) тела выполняется равенство:

\[F=k\left(l-l_0\right)=k\Delta l\ \left(2\right),\]

где $F$ — деформирующая сила; $l_0$ — начальная длина тела; $l$ — длина тела после деформации; $k$ — коэффициент упругости (коэффициент жесткости, жесткость), $ \left[k\right]=\frac<Н><м>$. Коэффициент упругости зависит от материала тела, его размеров и формы.

Так как в деформированном теле возникают силы упругости ($F_u$), которые стремятся восстановить прежние размеры и форму телу, то часто закон Гука формулируют относительно сил упругости:

\[F_u=k\left|\Delta l\right|\ \left(3\right).\]

Закон Гука хорошо работает для деформаций, которые возникают в стержнях из стали, чугуна, и других твердых веществ, в пружинах. Справедлив закон Гука для деформаций растяжения и сжатия.

Закон Гука для малых деформаций

Сила упругости зависит от изменения расстояния между частями одного и того же тела. Следует помнить, что закон Гука выполняется только для малых деформаций. При больших деформациях сила упругости не пропорциональна измерению длины, при дальнейшем увеличении деформирующего воздействия тело способно разрушаться.

Если деформации тела малы, то силы упругости можно определять по ускорению, которое данные силы сообщают телам. Если тело неподвижно, то модуль силы упругости находят из равенства нулю векторной суммы сил, которые действуют на тело.

Закон Гука можно записывать не только относительно сил, но часто его формулируют для такой величины как напряжение ($\sigma =\frac$ — сила, которая действует на единичную площадь поперечного сечения тела), тогда для малых деформаций:

где $Е$ — модуль Юнга;$\ \frac<\Delta l>$ — относительное удлинение тела.

Примеры задач с решением

Задание. К стальному тросу длинной $l$, диаметром $d$ подвесили груз массой $m$. Каково напряжение в тросе ($\sigma $), а также абсолютное его удлинение ($\Delta l$)?

Решение. Сделаем рисунок.

Для того чтобы найти силу упругости, рассмотрим силы, которые действуют на тело, подвешенное к тросу, так как сила упругости будет равна по величине силе натяжения ($\overline$). По второму закону Ньютона имеем:

В проекции на ось Y уравнения (1.1) получим:

По третьему закону Ньютона тело, действует на трос с силой равной по величине силе $\overline$, трос, действует на тело с силой $\overline$, равной$\overline<\ N,>$ но противоположного направления, так деформирующая трос сила ($\overline$) равна:

Под воздействием деформирующей силы в тросе возникает сила упругости, которая равна по величине:

Напряжение в тросе ($\sigma $) найдем как:

Площадь S — это площадь поперечного сечения троса:

Задание. Какова абсолютная деформация первой пружины из двух последовательно соединенных пружин (рис.2), если коэффициенты жесткости пружин равны: $k_1\ и\ k_2$, а удлинение второй пружины составляет $\Delta x_2$?

Решение. Если система из последовательно соединенных пружин находится в состоянии равновесия, то силы натяжения данных пружин одинаковы:

\[F_1=k_1\Delta x_1;;\ F_2=k_2\Delta x_2\left(2.2\right).\]

Согласно (2.1) и (2.2) имеем:

\[k_1\Delta x_1=k_2\Delta x_2\ \left(2.3\right).\]

Выразим из (2.3) удлинение первой пружины:

Ответ. $\Delta x_1=\frac$.

www.webmath.ru

Смотрите так же:

  • Жалоба на судоисполнителей Куда жаловаться на судебных приставов? Куда жаловаться на судебных приставов – такой вопрос нередко возникает у граждан, пытающихся вернуть долги при помощи судебных приставов-исполнителей. Конечного результата от приставов можно ждать […]
  • Отказ в назначении трудовой пенсии по старости ЧТО ВАЖНО ЗНАТЬ О НОВОМ ЗАКОНОПРОЕКТЕ О ПЕНСИЯХ Подписка на новости Письмо для подтверждения подписки отправлено на указанный вами e-mail. 08 августа 2016 Причин может быть несколько: либо не хватило трудового стажа, либо уровень […]
  • Следственный комитет комсомольск на амуре Комсомольский-на-Амуре следственный отдел на транспорте Адрес: 681013, Хабаровский край, г. Комсомольск-на-Амуре, ул. Красногвардейская, 34 Телефон: тел/факс 8 (4217) 54-36-88 Руководитель: Кутиков Дмитрий Сергеевич Заместитель […]
  • Претензия заказчику об оплате Претензия по оплате договора Зачастую претензия по оплате договора направляется, так как предусмотрен досудебный порядок урегулирования спора. А значит подготовка претензии, в том числе с требованием оплатить цену договора, — обязательное […]
  • Получение субсидии по смерти Порядок оформления пособия на погребение Смерть близкого человека еще никогда не приносила радости. Но, как бы ни было плохо, необходимо всегда знать о том, как получить пособие на погребение? Кто может получить эту выплату? Кто […]
  • Величина ставки налога на прибыль равна Расчет и ставки налога на прибыль организаций в России Величина налога на прибыль зависит не только от размера самой прибыли, которую каждая компания стремиться сделать максимально возможной. При расчете суммы данного налога влияние […]

Обсуждение закрыто.