Выталкивающая сила Закон архимеда

Выталкивающая сила Закон архимеда

Компьютерная модель представляет собой иллюстрацию закона Архимеда. Вводится понятие «Архимедова сила», демонстрируются условия плавания тел.

Существование гидростатического давления приводит к тому, что на любое тело, находящееся в жидкости или газе, действует выталкивающая сила. Впервые значение этой силы в жидкостях определил на опыте Архимед. Закон Архимеда формулируется так: на тело, погруженное в жидкость или газ, действует выталкивающая сила, равная весу того количества жидкости или газа, которое вытеснено погруженной частью тела.

Сила Архимеда, действующая на погруженное в жидкость тело, может быть рассчитана по формуле:

Поведение тела, находящегося в жидкости или газе, зависит от соотношения между модулями силы тяжести F т и архимедовой силы F A, которые действуют на это тело. Возможны следующие три случая:

files.school-collection.edu.ru

Выталкивающая сила Закон архимеда

§ 12. Закон Архимеда

На поверхность твёрдого тела, опущенного в жидкость (газ), действуют силы давления. Эти силы увеличиваются с глубиной погружения, и на нижнюю часть тела будет действовать со стороны жидкости большая сила, чем на верхнюю. Появляется так называемая выталкивающая сила, называемая ещё силой Архимеда.

Выталкивающая сила – это сумма всех сил, действующих на поверхность погружённого в жидкость тела, со стороны жидкости (рис. 19). Истинная причина появления выталкивающей силы – наличие различного гидростатического давления в разных точках жидкости.

Для нахождения силы Архимеда мысленно заменим тело жидкостью в объёме тела (рис. 20). Ясно, что выделенный объём жидкости будет неподвижен относительно остальной жидкости. На него со стороны окружающей жидкости будет действовать такая же сила, как и на погружённое тело. Напомним, что эту силу мы назвали выталкивающей. По третьему закону Ньютона, выделенная в объёме тела жидкость (вытесненная телом) будет действовать на окружающую жидкость с той же по модулю, но противоположно направленной силой. Эта сила называется по определению весом вытесненного объёма жидкости. Вспомним, что весом тела неподвижного в некоторой системе отсчёта (не обязательно инерциальной) называется сила, с которой тело действует на подставку или тянет за подвес.

В нашем случае роль подставки (подвеса) для выделенного объёма жидкости играет окружающая жидкость. Итак,

выталкивающая сила, действующая на тело, погружённое в жидкость, равна по модулю весу вытесненной жидкости и противоположно ему направлена. Это и есть закон Архимеда.

Заметим, что в формулировке закона говорится о весе вытесненной жидкости, а не о силе тяжести. И это весьма существенно, т. к. вес тела не всегда совпадает с силой тяжести, действующей на него. Например, ящик массы `m` в кабине поднимающегося вверх с ускорением `a` лифта давит на пол с силой `m(g+a)`. Это значит, что вес ящика будет`Q=m(g+a)`, в то время как сила тяжести, действующая на ящик, будет `mg`.

Теперь ясно, что выталкивающая сила появляется тогда, когда нет состояния невесомости, т. е. когда любое тело (в том числе и жидкость) имеет вес. Причиной возникновения веса в некоторой системе отсчёта могут быть поле тяжести или наличие ускорения у этой системы отсчёта (по отношению к инерциальной системе отсчёта). Если сосуд с жидкостью свободно падает, то жидкость находится в состоянии невесомости и на погружённое в неё тело сила Архимеда не действует. Не действует эта сила и в космическом корабле, двигатели которого не работают.

При доказательстве закона Архимеда мы считали, что тело полностью погружено в жидкость и вся поверхность тела соприкасается с жидкостью. Если часть поверхности тела плотно прилегает к стенке или дну сосуда так, что между ними нет прослойки жидкости, то закон Архимеда не применим.

Яркой иллюстрацией к сказанному служит опыт, когда ровную нижнюю поверхность деревянного кубика натирают парафином и плотно приставляют ко дну сосуда. Затем осторожно наливают воду. Брусок не всплывает, т. к. со стороны воды на него действует сила, прижимающая его ко дну, а не выталкивающая вверх (рис. 21). Известно, что это явление представляет опасность для подводной лодки, лёгшей на грунт.

Приведённая формулировка закона Архимеда остаётся справедливой и в случае, когда тело плавает в жидкости или частично опущено в неё через свободную, т. е. не соприкасающуюся со стенками сосуда, поверхность жидкости. Доказательство аналогично случаю полностью погружённого в жидкость тела.

Нам осталось научиться находить вес вытесненной жидкости и линию действия выталкивающей силы. В общем случае это не так легко сделать, что видно на примере погружения тела в жидкость, вращающуюся вместе с сосудом.

Рассмотрим наиболее простой и часто встречающийся на практике случай. Пусть сосуд с жидкостью неподвижен в некоторой инерциальной системе отсчёта и находится в однородном поле тяжести. Например, кастрюля с водой на столе, озеро в лесу и т. д. Тогда, как известно, вес любого неподвижного тела равен силе тяжести, действующей на тело. Поэтому, вес вытесненной жидкости равен силе тяжести, действующей на неё, а выталкивающая сила равна по модулю этой силе тяжести и противоположно ей направлена. Линия действия выталкивающей силы будет проходить через центр тяжести вытесненного объёма жидкости.

Действительно, на этот объём жидкости действуют две силы – сила тяжести `mvecg`, приложенная в центре тяжести (ц. т.), и выталкивающая сила `vecF` (рис. 22). Так как выделенный объём жидкости находится в равновесии, то сумма моментов этих двух сил относительно любой оси, проходящей через ц. т., должна быть равна нулю. Момент силы тяжести равен нулю, а значит, и момент выталкивающей силы тоже нуль, т. е. линия действия выталкивающей силы проходит через ц. т. вытесненного объёма жидкости. Так как точку приложения силы можно переносить вдоль линии её действия, то обычно точку приложения выталкивающей силы помещают в ц. т. вытесненной жидкости (т. `C` на рис. 22) и называют эту точку центром давлений, поскольку выталкивающая сила есть сумма всех сил давления со стороны жидкости на поверхность погружённого в неё тела.

Обратите внимание на то, что ц. т. вытесненного телом объёма жидкости может и не совпадать с ц. т. самого тела. Погрузите полностью в воду, например, кусок льда с вмёрзшим в него стальным болтом.

Тонкий однородный стержень, укреплённый вверху шарнирно (рис. 23), опущен в воду так, что две трети стержня оказались в воде. Определите плотность материала стержня, считая плотность воды известной.

На стержень действуют сила тяжести стержня `mvecg`, приложенная в центре стержня, сила Архимеда `vecF`, приложенная в центре давлений, т. е. в центре погружённой в воду части стержня, и сила реакции шарнира, проходящая через т. `A` (на рис. не показана).

Стержень находится в равновесии. Поэтому сумма моментов относительно оси `A` всех действующих на стержень сил равна нулю. Обозначим угол стержня с вертикалью через `alpha`, а длину стержня через `l`. Имеем:

`mgl/2 sinalpha-F*2/3 lsinalpha=0`.

Пусть `S` — площадь поперечного сечения стержня, `rho` — плотность материала стержня, `rho_0=1 «г»//»см»^3` — плотность воды. Тогда масса стержня `m=rholS`, а сила Архимеда `F=rho_0 2/3 lSg`. Из записанных уравнений находим `rho=8/9 rho_0

zftsh.online

Выталкивающая сила

Разделы: Физика

Цели урока: убедиться в существовании выталкивающей силы, осознать причины её возникновения и вывести правила для её вычисления, содействовать формированию мировоззренческой идеи познаваемости явлений и свойств окружающего мира.

Задачи урока: Работать над формированием умений анализировать свойства и явления на основе знаний, выделять главную причину, влияющую на результат. Развивать коммуникативные умения. На этапе выдвижения гипотез развивать устную речь. Проверить уровень самостоятельности мышления школьника по применению учащимися знаний в различных ситуациях.

Архимед – выдающийся ученый Древней Греции, родился в 287 году до н.э. в портовом и судостроительном г. Сиракузы на острове Сицилия. Архимед получил блестящее образование у своего отца, астронома и математика Фидия, родственника сиракузского тирана Гиерона, покровительствовавшего Архимеду. В юности провёл несколько лет в крупнейшем культурном центре в Александрии, где у него сложились дружеские отношения с астрономом Кононом и географом-математиком Эратосфеном. Это послужило толчком к развитию его выдающихся способностей. В Сицилию вернулся уже зрелым ученым. Он прославился многочисленными научными трудами главным образом в области физики и геометрии.

Последние годы жизни Архимед был в Сиракузах, осажденных римским флотом и войском. Шла 2-я Пуническая война. И великий ученый, не жалея сил, организовывает инженерную оборону родного города. Он построил множество удивительных боевых машин, топивших вражеские корабли, разносивших их в щепы, уничтожавших солдат. Однако слишком маленьким было войско защитников города по сравнению с огромным римским войском. И в 212 г. до н.э. Сиракузы были взяты.

Гений Архимеда вызывал восхищение у римлян и римский полководец Марцелл приказал сохранить ему жизнь. Но солдат, не знавший в лицо Архимеда, убил его.

Одним из важнейших его открытий стал закон, впоследствии названный законом Архимеда. Существует предание, что идея этого закона посетила Архимеда, когда он принимал ванну, с возгласом “Эврика!” он выскочил из ванны и нагим побежал записывать пришедшую к нему научную истину. Суть этой истины и предстоит выяснить, нужно убедиться в существовании выталкивающей силы, осознать причины её возникновения и вывести правила для её вычисления.

Давление в жидкости или газе зависит от глубины погружения тела и приводит к появлению выталкивающей силы, действующей на тело и направленной вертикально вверх.

Если тело опустить в жидкость или газ, то под действием выталкивающей силы оно будет всплывать из более глубоких слоев в менее глубокие. Выведем формулу для определения силы Архимеда для прямоугольного параллелепипеда.

Давление жидкости на верхнюю грань равно

р1 = ж*g*h1,

где: h1 – высота столба жидкости над верхней гранью.

Сила давления на верхнюю грань равна

F1= р1*S = ж*g*h1*S,

Где: S – площадь верхней грани.

Давление жидкости на нижнюю грань равно

р2= ж*g*h2,

где: h2 – высота столба жидкости над нижней гранью.

Сила давления на нижнюю грань равна

F2= p2*S = ж*g*h2*S,

Где: S – площадь нижней грани куба.

Поскольку h2 > h1, то р2 > р1 и F2 > F1.

Разность между силами F2 и F1 равна:

F2 – F1 = ж*g*h2*S – ж*g*h1*S = ж*g*S* (h2 – h1).

Так как h2 – h1 = V – объему тела или части тела, погруженной в жидкость или газ, то F2 – F1 = ж*g*S*H = g* ж*V

Произведение плотности на объем есть масса жидкости или газа. Следовательно, разность сил равна весу вытесненной телом жидкости:

F2 – F1= mж*g = Pж = Fвыт.

Выталкивающая сила есть сила Архимеда, определяющая закон Архимеда

Равнодействующая сил, действующих на боковые грани равна нулю, поэтому в расчетах не участвует.

Таким образом, на тело, погруженное в жидкость или газ, действует выталкивающая сила равная весу вытесненной им жидкости или газа.

Закон Архимеда, впервые был упомянут Архимедом в трактате «О плавающих телах». Архимед писал: «тела более тяжелые, чем жидкость, опущенные в эту жидкость, будут опускаться пока не дойдут до самого низа, и в жидкости станут легче на величину веса жидкости в объеме, равном объему погруженного тела».

Рассмотрим, как зависит сила Архимеда и зависит ли от веса тела, объема тела, плотности тела и плотности жидкости.

Исходя из формулы силы Архимеда, она зависит от плотности жидкости, в которую погружено тело, и от объёма этого тела. Но она не зависит, например, от плотности вещества тела, погружаемого в жидкость, так как эта величина не входит в полученную формулу.
Определим теперь вес тела, погружённого в жидкость (или газ). Так как две силы, действующие на тело в этом случае, направлены в противоположные стороны (сила тяжести вниз, а архимедова сила вверх), то вес тела в жидкости будет меньше веса тела в вакууме на архимедову силу:

Таким образам, если тело погружено в жидкость (или газ), то оно теряет в своём весе столько, сколько весит вытесненная им жидкость (или газ).

Сила Архимеда зависит от плотности жидкости и объема тела или его погруженной части и не зависит от плотности тела, его веса и объема жидкости.

Определение силы Архимеда лабораторным методом.

Оборудование: стакан с чистой водой, стакан с соленой водой, цилиндр, динамометр.

  • определяем вес тела в воздухе;
  • определяем вес тела в жидкости;
  • находим разницу между весом тела в воздухе и весом тела в жидкости.
  • xn--i1abbnckbmcl9fb.xn--p1ai

    Закон Архимеда

    Выталкивающая сила, действующая на погруженное в жидкость тело, равна весу вытесненной им жидкости.

    «Эврика!» («Нашел!») — именно этот возглас, согласно легенде, издал древнегреческий ученый и философ Архимед, открыв принцип вытеснения. Легенда гласит, что сиракузский царь Герон II попросил мыслителя определить, из чистого ли золота сделана его корона, не причиняя вреда самому царскому венцу. Взвесить корону Архимеду труда не составило, но этого было мало — нужно было определить объем короны, чтобы рассчитать плотность металла, из которого она отлита, и определить, чистое ли это золото.

    Дальше, согласно легенде, Архимед, озабоченный мыслями о том, как определить объем короны, погрузился в ванну — и вдруг заметил, что уровень воды в ванне поднялся. И тут ученый осознал, что объем его тела вытеснил равный ему объем воды, следовательно, и корона, если ее опустить в заполненный до краев таз, вытеснит из него объем воды, равный ее объему. Решение задачи было найдено и, согласно самой расхожей версии легенды, ученый побежал докладывать о своей победе в царский дворец, даже не потрудившись одеться.

    Однако, что правда — то правда: именно Архимед открыл принцип плавучести. Если твердое тело погрузить в жидкость, оно вытеснит объем жидкости, равный объему погруженной в жидкость части тела. Давление, которое ранее действовало на вытесненную жидкость, теперь будет действовать на твердое тело, вытеснившее ее. И, если действующая вертикально вверх выталкивающая сила окажется больше силы тяжести, тянущей тело вертикально вниз, тело будет всплывать; в противном случае оно пойдет ко дну (утонет). Говоря современным языком, тело плавает, если его средняя плотность меньше плотности жидкости, в которую оно погружено.

    Закон Архимеда можно истолковать с точки зрения молекулярно-кинетической теории. В покоящейся жидкости давление производится посредством ударов движущихся молекул. Когда некий объем жидкости вымещается твердым телом, направленный вверх импульс ударов молекул будет приходиться не на вытесненные телом молекулы жидкости, а на само тело, чем и объясняется давление, оказываемое на него снизу и выталкивающее его в направлении поверхности жидкости. Если же тело погружено в жидкость полностью, выталкивающая сила будет по-прежнему действовать на него, поскольку давление нарастает с увеличением глубины, и нижняя часть тела подвергается большему давлению, чем верхняя, откуда и возникает выталкивающая сила. Таково объяснение выталкивающей силы на молекулярном уровне.

    Такая картина выталкивания объясняет, почему судно, сделанное из стали, которая значительно плотнее воды, остается на плаву. Дело в том, что объем вытесненной судном воды равен объему погруженной в воду стали плюс объему воздуха, содержащегося внутри корпуса судна ниже ватерлинии. Если усреднить плотность оболочки корпуса и воздуха внутри нее, получится, что плотность судна (как физического тела) меньше плотности воды, поэтому выталкивающая сила, действующая на него в результате направленных вверх импульсов удара молекул воды, оказывается выше гравитационной силы притяжения Земли, тянущей судно ко дну, — и корабль плывет.

    Древнегреческий математик, изобретатель и натурфилософ. О его жизни известно мало. Доказал ряд основополагающих математических теорем, прославился благодаря изобретению различных механизмов, до сих пор находящих широкое применение как в быту, так и в оборонной промышленности. Легенда гласит, что Архимед умер насильственной смертью, пав от руки римского воина во время осады Сиракуз, не пожелав укрыться в доме, поскольку был всецело поглощен геометрической задачей, начертанной им на прибрежном песке.

    elementy.ru

    Науколандия

    Статьи по естественным наукам и математике

    Чему равна выталкивающая сила?

    Выталкивающую силу, или силу Архимеда, можно вычислить. Особенно легко это сделать для тела, стороны которого прямоугольники (прямоугольного параллелепипеда). Например, такую форму имеет брусок.

    Поскольку боковые силы давления жидкости можно не учитывать, так как они взаимно уничтожаются (их равнодействующая равна нулю), то рассматриваются только силы давления воды, действующие на нижнюю и верхнюю поверхности. Если тело не полностью погружено в воду, то есть только сила давления воды, действующая снизу. Она единственная, которая создает выталкивающую силу.

    Давление жидкости на глубине h определяется формулой:

    Сила давления определяется формулой:

    Заменив давление во второй формуле на равную ему правую часть из первой формулы, получим:

    Это и есть сила давления жидкости, действующая на поверхность тела на определенной глубине. Если тело плавает на поверхности, то эта сила будет выталкивающей силой (силой Архимеда). h здесь определяется высотой подводной части тела. В таком случае формулу можно записать так: FA = ρghS. Тем самым подчеркнув, что речь идет о силе Архимеда.

    Произведение высоты (h) погруженной в воду части прямоугольного бруска на площадь его основания (S) — это объем (V) погруженной части этого тела. Действительно, чтобы найти объем параллелепипеда надо перемножить его ширину (a), длину (b) и высоту (h). Произведение ширины на длину есть площадь основания (S). Поэтому в формуле мы можем заменить произведение hS на V:

    Теперь обратим внимание на то, что ρ — это плотность жидкости, а V — это объем погруженного тела (или части тела). Но ведь тело, погружаясь в жидкость, вытесняет из нее объем жидкости, равный погруженному телу. То есть, если погрузить в воду тело объемом 10 см 3 , то оно вытеснит 10 см 3 воды. Конечно, этот объем воды скорее всего не выскочит из емкости, заменившись объемом тела. Просто уровень воды в емкости поднимется на 10 см 3 .

    Поэтому в формуле FA = ρgV мы можем иметь в виду не объем погруженного тела, а объем вытесненной телом воды.

    Вспомним, что произведение плотности (ρ) на объем (V) — это масса тела (m):

    В таком случае формулу, определяющую выталкивающую силу, можно записать так:

    Но ведь произведение массы тела (m) на ускорение свободного падения (g) есть вес (P) этого тела. Тогда получается такое равенство:

    Таким образом, сила Архимеда (или выталкивающая сила) равна по модулю (численному значению) весу жидкости в объеме, равном объему погруженного в нее тела (или его погруженной части). Это и есть закон Архимеда.

    Если тело в виде бруска полностью погружено в воду, то выталкивающую силу для него определяет разность между силой давления воды сверху и силой давления снизу. Сверху на тело давит сила, равная

    Тогда мы можем записать

    hверх – это расстояние от кромки воды до верхней поверхности тела, а hниз — это расстояние от кромки воды до нижней поверхности тела. Их разность есть высота тела. Следовательно,

    FA = ρghS, где h — это высота тела.

    Получилось то же самое, что и для частично погруженного тела, хотя там h — это высота части тела, находящейся под водой. В том случае уже было доказано, что FA = P. То же самое выполняется и здесь: выталкивающая сила, действующая на тело, равна по модулю весу вытесненной им жидкости, которая равна по объему погруженному телу.

    Обратите внимание, что вес тела и вес жидкости одинаковых объемов чаще всего разный, так как у тела и жидкости чаще всего разные плотности. Поэтому нельзя говорить, что выталкивающая сила равна весу тела. Она равна весу жидкости, объемом равному телу. Причем весу по модулю, так как выталкивающая сила направлена вверх, а вес вниз.

    scienceland.info

    Смотрите так же:

    • Пенсии в мвд в 2014 Расчет пенсии для сотрудников МВД — льготы полицейским пенсионерам На сегодняшний день расчет пенсии для сотрудников МВД осуществляется согласно пенсионного законодательства Российской Федерации, которое, как известно, каждый год меняется […]
    • Уложение о наказаниях уголовных и исправительных было принято в Уложение о наказаниях уголовных и исправительных 1845 Большая советская энциклопедия. — М.: Советская энциклопедия . 1969—1978 . Смотреть что такое "Уложение о наказаниях уголовных и исправительных 1845" в других словарях: УЛОЖЕНИЕ О […]
    • Детское пособие список документов Правила оформления детского пособия Появление на свет ребенка всегда радость, но когда поднимается вопрос об оформлении детского пособия, то здесь и начинаются проблемы. Какие документы необходимо предъявить для пособия до 1,5 лет, а […]
    • Законы закономерности принципы и модели управления Законы, закономерности, принципы и модели управления таможенным делом. Предмет: Таможенное право Стоимость готовой работы 600 руб. Введение 3ГЛАВА 1. ПОНЯТИЕ УПРАВЛЕНИЯ ТАМОЖЕННЫМ ДЕЛОМ 41.1 Понятие принципов и методов управления 41.2 […]
    • Образец жалобы на действия врача Образец жалобы на действия врача Объем жалобы Наполняя самостоятельно бланк жалобы на врача содержанием, деталями вашей конкретной жизненной ситуации, не забывайте, что по объему жалоба не должна быть более 1-2 страниц печатного текста – […]
    • Как пишется заявление на отпуск по беременности Заявление на отпуск по беременности и родам Трудовым кодексом РФ одной из социальных гарантий защиты материнства и детства является обязанность работодателя при поступлении такого документа, как заявление на отпуск по беременности и […]

    Обсуждение закрыто.