Винт на судне

Судовые передачи мощности

К важнейшим составным частям судовых энергетических установок относятся элементы передачи мощности. Под этим понимаются все элементы, участвующие в передаче крутящего момента от коленчатого вала или ротора в турбинах к гребному винту. Типовая дизельная энергетическая установка с двумя среднеоборотными дизелями показана на рисунке. Она включает в себя муфты, одноступенчатый редуктор, валопровод и гребной винт. В энергетических установках с малооборотными дизелями редуктор отсутствует, в турбинных и энергетических установках с высокооборотными дизелями ставят двух- и трехступенчатые редукторы. В дизель- и турбоэлектрических энергетических установках предусмотрены электродвигатели.

Дизель-редукторная энергетическая установка со среднеоборотными дизелями

1 — муфте; 2 — редуктор; 3 — валопровод; 4 — гребной винт

Муфта соединяет узлы, выполняющие вращательные движения. Муфта предназначена для передачи крутящего момента от ведущего вала к ведомому, а также для сглаживания незначительных продольных, радиальных, угловых отклонений и крутильных колебаний. В зависимости от конструкции, назначения и принципа действия различают жесткие (глухие), упругие, фрикционные, гидродинамические и электромагнитные муфты. В судовых установках встречаются все виды муфт в зависимости от типа, мощности и конструкции главного двигателя. В установках, не имеющих передаточных механизмов (например, в малооборотных дизелях), чаще всего применяют жесткие муфты (рис. а, b). Фланцы жесткой муфты в разогретом состоянии запрессованы на вал или на конус и дополнительно зафиксированы призматической шпонкой. В энергетических установках с редуктором связь между редуктором и двигателем, а также с валом гребного винта осуществляется со стороны двигателя чаще всего через соединительную муфту, а со стороны гребного винта — через разобщительную. На рис. е показана упругая муфта. Она состоит из двух оснований, соединенных между собой гибкими прокладками, изготовленными из специальной резины. Такие муфты винтами крепятся к фланцам вала. Они могут передавать моменты независимо от направления вращения. За счет гибких вкладышей возможно выравнивание при перекашивании валов относительно друг друга.

Работа гидродинамических муфт основывается на гидравлическом принципе, схематично показанном на рис. с. Это можно представить себе так: насос, приводимый в движение двигателем, отсасывает жидкость из резервуара, и нагнетает ее в турбину. Жидкость под определенным давлением протекает через лопатки турбины, приводя ее в движение, и затем течет обратно в резервуар. При одинаковых размерах роторов насоса и турбины агрегат работает как гидравлическая муфта, при различных — он превращается в гидротрансформаторную передачу, позволяющую изменять частоту вращения ведомого вала. На практике роторы насосов и турбин находятся в специальном корпусе (рис. d). Действие гидродинамической муфты основывается на энергообмене между двумя полумуфтами (рис. d) с помощью рабочей среды и циркуляции жидкости. Эта циркуляция возникает только в том случае, когда первичная сторона и турбина имеют равные частоты вращения. У гидравлических муфт, используемых на судах, это скольжение составляет от 1,5 до 3%.

Судовые муфты

а, b — жесткие (глухие) муфты: 1 — полумуфта; 2 — фланец; 3 — шпоночная канавка со шпонкой. с — схема гидромуфты: 1, 2 — насосы; 3 — цистерна. d — схема гидромуфты (турбо-муфты); е — гибкая муфта. 4 — фланец; 5 — элемент муфты. f — электромагнитная муфта.

В судовых главных двигателях довольно часто применяют также электромагнитные индукционные скользящие муфты. Принцип действия подобной муфты состоит в использовании вращающего момента, возникающего вследствие воздействия вращающегося магнитного поля на индукционные токи. Внутренняя часть муфты расположена на ведущем вале. Обмотки полюсов через щетки и контактные кольца питаются постоянным током. Внешняя часть муфты имеет обмотку в виде беличьей клетки. Когда внешняя часть, приводимая в движение двигателем через вал, начинает вращаться и возбуждается, она вместе с валом, связанным с ней и ведущим, например, к редуктору, попадает в область вращения магнитного поля. За счет этого в обмотке типа беличьей клетки этой части муфты возникают индукционные токи. Эти токи, взаимодействуя с силовыми линиями магнитного поля, обусловливают возникновение момента вращения, вследствие чего внешняя часть муфты начинает вращаться вместе с внутренней. Таким образом вращение, мощность и момент вращения передаются от двигателя к валу редуктора. Часть муфты с обмоткой типа беличьей клетки должна — аналогично гидродинамической и электромагнитной муфте — вращаться медленнее, чем вращающееся магнитное поле, так как при одинаковой скорости вращения обеих частей не могли бы возникнуть индуктированные токи и передача вращающего момента была бы невозможна. Поэтому и в данном случае имеет место так называемое скольжение муфты. Редуктор главного двигателя должен передавать момент вращения и так изменять его частоту вращения, чтобы она имела оптимальную величину, необходимую для нормальной работы гребного винта. На судах чаще всего применяют механические редукторы, состоящие из зубчатых колес. С введением планетарного редуктора появилась возможность значительно уменьшить размеры и общую массу. В последнее время на новых судах все чаще используют планетарные редукторы в энергетических установках со среднеоборотными дизелями, газовыми или паровыми турбинами.

Механический судовой редуктор

а — суммирующий; b — планетарный. 1 — вал турбины высокого давления; 2 — вал турбины низкого давления; 3, 5, 8, 9 — центральные солнечные шестерни; 4 — водило; 6 — свободный эпицикл; 7 — вал; 10 — тормозной эпицикл; 11 — свободное водило; 12 — полый вал; 13 — зубчатые колеса (3-я ступень); 14 — приводное зубчатое колесо гребного вала; 15 — гребной вал; 16 — гребной винт

Валопровод соединяет приводной двигатель с гребным винтом. Гребной вал, который в зависимости от расположения машинного отделения на судне может состоять из одной или нескольких соединенных через глухие муфты частей, должен передавать момент вращения двигателя на гребной винт. Гребной вал опирается на радиальные подшипники. Концевая часть проходит в уплотнительном сальнике, который предохраняет туннель гребного вала от попадания морской воды. На конусообразной концевой части гребного вала закреплен гребной винт (рис. а). Осевое давление, действующее со стороны гребного винта и передаваемое дальше через вал, воспринимается упорным подшипником. Принцип действия упорного подшипника изображен на рис. d-е. Такой подшипник старого типа состоит из взаимодействующего с опорными поверхностями гребня давления; опорные поверхности залиты металлом. На переднем ходу функционирует одна поверхность гребня давления, на заднем — другая.

Валопровод

а — общий вид; b — полумуфта; с — упорный подшипник; d, e — принцип действия упорного подшипника. 1 — гребной вал; 2 — сальник; 3 — полу- подшипник; 6 — переборочный сальник; 7 — муфта; 4 — промежуточный вал; 5 — опорный упорный подшипник; 8 — упорный вал

Гребной винт в настоящее время является почти единственным типом движителя. Он состоит из нескольких лопастей, радиально укрепленных на ступице. Во время вращения гребного винта вокруг своей оси на лопастях возникает сила давления, которая в конечном итоге обусловливает движение судна. Характерной величиной гребного винта является шаг. Его теоретическое значение, т. е. без учета скольжения, зависит от угла атаки лопасти гребного винта. Для достижения хорошего взаимодействия между главным двигателем и гребным винтом необходимо, чтобы параметры и особенно шаг винта имели определенные значения. Оптимальное взаимодействие будет достигнуто лишь при определенном состоянии нагрузки судна и при определенных погодных условиях (ветер, волнение и т. д.). Если эти значения отклоняются от заданных, то взаимодействие двигателя и гребного винта не приносит результата, заложенного в проекте. На практике это означает, что взаимодействие двигателя и относящегося к нему гребного винта будет наиболее эффективным, например, при полной нагрузке судна и при хорошей погоде. На судах, работающих в изменяющихся условиях, таких как буксиры или рыболовные суда (свободный ход, ход с тралом), движитель должен быть приспособлен к соответствующим условиям работы. Вместе с тем стало бы возможным одновременное использование полной мощности приводного двигателя при различных состояниях его нагрузки.

Судовой движитель

а — гребной винт с неподвижными лопастями; b — винт регулируемого шага; с — гребной винт в насадке; d — соосные гребные винты

Лопасти винта фиксированного шага отлиты вместе со ступицей или прочно привинчены к ней (см. рис. а). Изменять шаг можно на гребных винтах регулируемого шага ВРШ (рис. b). Лопасти гребного винта расположены на криволинейных дисках и укреплены на ступице винта так, что они могут поворачиваться. Применение ВРШ позволяет использовать нереверсивные двигатели в качестве судовых. Они могут работать и при постоянной частоте вращения, так как в этом случае можно осуществлять все маневры путем изменения угла атаки, т. е. от самого большого шага винта на переднем ходу, когда лопасти находятся в таком положении, что несмотря на вращение гребного винта, тяга не появляется (и поэтому судно не движется), до положения лопастей, соответствующего заднему ходу. Вначале ВРШ применяли только на буксирах, рыболовных и специальных судах, и только позднее их начали устанавливать на судах торгового флота. За счет установки ВРШ достигаются большая экономичность энергетических установок, возможность использования полной мощности двигателя при различной нагрузке, а также возможность применения нереверсивных ДВС или паровых турбин без турбин заднего хода. К преимуществам следует также отнести и возможность осуществления заднего хода при полной мощности двигателя.

Иногда на судах (особенно на судах речного флота) гребной винт устанавливают в насадке (см. рис. с). Такая конструкция позволяет улучшить уелввия работы гребного винта и повысить КПД. Диаметр судового движителя может достигать 9 м, а масса — 50 т. Гребные винты регулируемого шага имеют меньший диаметр. Преобладающее число судов имеет только один гребной винт, устанавливаемый в диаметральной плоскости судна. Встречаются также двухвинтовые суда, которые приводятся в движение либо от двух малооборотных, либо от четырех среднеоборотных дизелей, причем в последнем случае один гребной винт приводится в движение двумя двигателями. В редких случаях строятся трехвинтовые суда, например торпедные катера, на которых два бортовых движителя, приводятся в движение от высокооборотных дизелей через редукторную передачу, а средний гребной винт — от газовой турбины. Некоторые большие пассажирские суда и боевые корабли, например авианосцы, снабжаются четырьмя симметрично расположенными гребными винтами. В условиях постоянно растущих мощностей главных двигателей требуются гребные винты очень больших диаметров, что приводит к технологическим и производственным трудностям. Чтобы противодействовать этому и улучшить КПД, пытаются «устанавливать движители, вращающиеся в противоположных направлениях (см. рис. d). В этом случае необходимы сложные устройства, такие как полые гребные валы и специальные редукторные передачи. Наряду с гребными винтами в последнее время применяют крыльчатые движители. Они состоят из нескольких вращающихся навесных лопаткообразных лопастей изменяющегося профиля, укрепленных на плоском рабочем колесе. Рабочее колесо приводится в движение главным двигателем через гипоидный зубчатый редуктор. Вращающиеся лопаткообразные лопасти создают силу упора, действующую в направлении, зависящем от угла установки лопастей, как показано на рис. а. Во время работы движителя можно плавно изменять угол атаки лопастей.

Крыльчатый движитель

а — принцип действия; b — движитель Фойта-Шнейдера (вид сбоку); с — движитель Фойта Шнейдера (вид сверху); d — буксир с движителем Фойта-Шнейдера в носовой части судна; е — буксир с движителем Фойта-Шнейдера в кормовой части судна

I — «Стоп»; 2 — «Передний ход»; 3 — «Задний ход»; 4 — «Поворот на левый борт»; 5 — «Поворот на левый борт» (на заднем ходу); 6 — «Поворот на правый борт»; 7 — управляющий механизм; 8 — привод; 9 — лопасти; 10 — распределительные рычаги и тяги

Крыльчатый движитель может служить как в качестве пропульсивного движителя, так и в качестве руля. Судно, оснащенное двумя симметрично расположенными движителями, может двигаться в любом направлении. Недостатком является частая повреждаемость лопаткообразных лопастей, выступающих ниже днища судна. Крыльчатый движитель в основном используется на портовых буксирах и лоцманских судах, а также на судах портовой службы. Мощность подобных установок невелика: максимально она составляет 2200 кВт.

www.seaships.ru

Принцип работы и устройство гребного винта

Чтобы заставить лодку, как и любое судно, двигаться с постоянной скоростью, надо приложить к ней постоянно действующее усилие (тягу), которое было бы достаточным для преодоления сопротивления воды.

На малых судах для создания тяги наибольшее распространение получил гребной винт — легкий, компактный, высокоэффективный, простой в изготовлении и удобный в эксплуатации движитель. Поговорим о нем поподробнее, разберемся в принципе работы и устройстве гребного винта.

Гребной винт (рис. 1) состоит из втулки — ступицы и нескольких лопастей, отлитых заодно с нею или изготовленных отдельно и закрепленных на ней. Винт обычно располагается в корме судна и приводится во вращение двигателем через гребной вал. Своим названием он обязан тому, что при работе любая точка его лопасти движется по винтовой линии — вращается и одновременно перемещается вперед вместе с судном. В основу теории, объясняющей работу гребного винта, положен принцип гидродинамического крыла. На первый взгляд это кажется странным — причем здесь крыло?, — но не торопитесь с выводом.

Посмотрим на лопасть винта сбоку (рис. 2) и представим направление, в котором она движется в воде (или, применив принцип обратимости движения, направление потока, обтекающего лопасть).

Скорость W потока воды относительно лопасти можно получить геометрическим сложением двух векторов: вызываемой вращением винта окружной скорости Vr=2πrn (π=3,14; r — отстояние рассматриваемого сечения лопасти от оси винта; n — число оборотов винта в секунду) и поступательной скорости движения 1 вместе с судном Vа. Вектор суммарной скорости W направлен к нижней поверхности лопасти под углом α, называемым в теории крыла углом атаки. При этом на нижней поверхности лопасти (ее называют нагнетающей) создается повышенное давление воды, а на верхней (засасывающей) — разрежение. В результате разности давлений на лопасти, как на крыле, возникает подъемная сила Y. Если разложить ее на составляющие, одна из которых направлена в сторону движения судна, а вторая перпендикулярна ему, то получим соответственно силу Р , создающую упор гребного винта, и силу T, создающую крутящий момент, который и приходится преодолевать двигателю для того, чтобы винт вращался и двигал судно.

Упор гребного винта, создаваемый подъемной силой, зависит не столько от площади лопасти, сколько — в полной аналогии с крылом — от таких ее параметров, как угол атаки, профиль сечения, длина лопасти.

Познакомимся же с этими и другими основными характеристиками гребного винта.

Диаметр винта D определяется по окружности, описываемой наиболее удаленной от оси винта точкой лопасти.

Геометрический шаг гребного винта H — это шаг винтовой поверхности, с которой совпадает нагнетающая сторона лопасти. Если бы винт ввинчивался в воду, как в гайку, то за один его оборот судно прошло бы расстояние, равное шагу винта, а его скорость была бы равна Hn.

Почему лопасть должна иметь винтовую поверхность? Посмотрим на рис. 2. Очевидно, винт даст наибольший упор, если сечения лопасти на любом радиусе r будут расположены под одним и тем же оптимальным углом атаки к набегающему потоку α. Однако вблизи ступицы окружная скорость Vr=2πrn будет меньше, чем у конца лопасти, в то время как осевая скорость винта Hn везде одинакова. В результате изменится величина и направление скорости W. Чтобы сохранить угол α неизменным, лопасть у ступицы следует развернуть под большим углом к Vr, чем у конца. Это хорошо видно также и из другого рисунка (рис. 3), где показан способ образования и проверки винтовой поверхности лопасти с помощью шаговых угольников.

Диаметр и шаг винта являются важнейшими параметрами, от которых зависит возможность наиболее полного использования мощности двигателя, и, следовательно, достижения наибольшей скорости хода судна.

Если шаг винта слишком велик для данных скорости и числа оборотов, лопасти будут захватывать и отбрасывать назад слишком большое количество воды, упор винта возрастет, но зато одновременно увеличится крутящий момент на гребном валу и двигателю не хватит мощности, чтобы развить полные обороты. В этом случае говорят, что винт тяжелый.

Наоборот, если шаг мал, двигатель легко будет вращать винт на полном числе оборотов, но упор будет невелик, и судно не достигнет максимально возможной скорости. Такой винт считается легким.

Шаг и диаметр рассчитывают с учетом сопротивления воды движению корпуса, заданной скорости хода судна, числа оборотов и мощности устанавливаемого двигателя. Общее правило таково: для легких быстроходных лодок требуются винты с большим шагом или шаговым отношением H/D, для тяжелых и тихоходных — с меньшим. При обычно применяющихся двигателях с числом оборотов 1500—5000 об/мин оптимальное шаговое отношение H/D будет составлять: на гоночных мотолодках и глиссерах 0,9—1,4; легких прогулочных катерах 0,8—1,2; водоизмещающих катерах 0,6—1,0 и очень тяжелых тихоходных катерах 0,55—0,80. Важно иметь в виду, что эти значения справедливы, если гребной вал делает примерно 1000 об мин на каждые 15 км/час скорости лодки. В противных случаях необходимо применять редуктор, соответственно изменяющий число оборотов гребного винта.

Диаметр винта существенно влияет на загрузку двигателя. Например, при увеличении D всего на 5% приходится повышать мощность двигателя почти на 30%, чтобы получить то же число n оборотов винта. Это следует учитывать, если требуется «облегчить» тяжелый винт: иногда бывает достаточно немного подрезать концы лопастей до меньшего диаметра.

За один оборот винт вместе с судном продвигается вперед (рис. 4) не на величину шага Н, а из-за скольжения в воде — на меньшее расстояние, называемое поступью hp. Потеря скорости при этом составит Hn=hpn. Величина скольжения характеризуется отношением:

Скольжение s выражается обычно в процентах.

Поступь и скольжение гребного винта легко определить, зная скорость лодки, шаг винта и число его оборотов, так как:

Важно подчеркнуть, что скольжение является непременным условием работы гребного винта, поскольку именно благодаря скольжению поток воды натекает на лопасть под углом атаки и на ней создается подъемная сила — упор. Если бы скольжение было равно нулю, поступь равнялась бы шагу винта и упора практически не было бы 2 .

Максимальной величины (100%) скольжение достигает при работе винта на судне, пришвартованном к берегу. Наименьшее скольжение (8—15%) имеют винты легких гоночных мотолодок и скутеров; у винтов глиссирующих катеров скольжение составляет 15—25%, у тяжелых водоизмещающих катеров 20—40%, а у парусных яхт, имеющих вспомогательный двигатель, 50—70%. Чрезмерное скольжение свидетельствует о том, что винт слишком тяжел или судно перегружено, так как с увеличением нагрузки (например, при буксировке мотолодкой воднолыжника) скольжение возрастает.

Для катерных винтов применяются сегментные, авиационные плоско-выпуклые и выпукло-вогнутые профили сечения лопастей. Последние два типа более эффективны, но сложнее в изготовлении и дают меньший упор при реверсировании, т. е. на заднем ходу.

Площадь лопастей, как уже отмечалось, не оказывает существенного влияния на упор винта. Однако чрезмерная площадь приводит к увеличению трения винта о воду и излишним затратам мощности двигателя.

На быстроходных катерах часто приходится сталкиваться с явлением кавитации гребного винта. Известно, что при пониженном давлении (например, высоко в горах) вода закипает при температуре ниже 100° С. У высокооборотных винтов разрежение на засасывающей стороне лопасти достигает такой большой величины, что вода вскипает уже при естественной температуре. Образуются пузырьки и полости, заполненные паром, — это явление и называется кавитацией. Различают две стадии кавитации (рис. 5). На первой стадии полости невелики и на работе винта они практически не сказываются. Однако когда пузырьки лопаются, создаются огромные местные давления, в результате чего материал лопасти выкрашивается у поверхности. Такие эрозионные разрушения при длительной работе кавитирующего винта могут быть весьма значительными.

При дальнейшем повышении скорости вращения винта наступает вторая стадия кавитации. Образуется сплошная полость (каверна), которая может замыкаться за пределами лопасти. Эрозия прекращается, но развиваемый винтом упор резко падает.

Момент наступления кавитации зависит не только от числа оборотов, но и от суммарной площади лопастей, толщины и кривизны профиля сечения лопасти, глубины погружения винта под ватерлинией и т. п. Чем меньше площадь лопастей, больше толщина их профиля и ближе к ватерлинии расположен винт, тем при меньших числах оборотов, т. е. «раньше», наступает кавитация. Отметим, что развитию кавитации способствуют пузыри воздуха и завихрения от находящихся перед винтом кронштейнов, вала, фальшкиля, увеличенный шаг винта и т, п.

Характеристикой площади лопастей винта является его дисковое отношение A/Ad, т. е. отношение суммарной площади всех развернутых и спрямленных лопастей A к площади круга Ad, описываемого винтом (рис. 6). Для малогабаритных винтов тихоходных судов дисковое отношение обычно составляет 0,35—0,60, для кавитирующих винтов быстроходных катеров 0,80—1,20.

Наибольшее распространение на катерах получили трехлопастные гребные винты, хотя на гоночных судах часто применяют и двухлопастные. Вообще говоря, двухлопастные винты более эффективны. У трехлопастного винта расстояние между кромками соседних лопастей меньше, поэтому в обтекание лопастей вносится большее искажение. Кроме того, крутящий момент у трехлопастного винта несколько больше; соответственно и мощность, потребная для его вращения, выше. Четыре и пять лопастей применяются, главным образом, в тех случаях, когда нужно понизить вибрацию и шум от работы винтов.

В зависимости от направления вращения гребного вала (смотря с кормы) применяют винты правого (по часовой стрелке) и левого вращения.

Конечной оценкой эффективности выбранного гребного винта является его коэффициент полезного действия ηp — отношение полезной мощности, затрачиваемой непосредственно на создание упора Р и движение судна со скоростью υ (т. е. Po, 75 л. с.), к мощности двигателя, подводимой к винту.

Потери мощности на гребном винте довольно значительны и достигают 35—50%. Они вызваны затратами на ускорение потока воды за винтом, на закручивание и сужение этого потока, на трение лопастей о воду и др. Получить высокий к. п. д. винта на катерах очень трудно из-за небольшой осадки, ограничивающей диаметр винта, и сложности подбора оптимального числа оборотов.

Винт, расположенный в корме, всегда оказывается в зоне действия попутного потока, увлекаемого корпусом судна, поэтому скорость его встречи с водой меньше, чем скорость судна. У легких глиссирующих судов, на которых винт установлен под плоским днищем, это уменьшение невелико (2—5%), но на тяжелых водоизмещающих катерах, особенно если винт располагается за дейдвудом, оно возрастает до 15— 20%. Очевидно, что попутный поток необходимо учитывать, иначе винт окажется тяжелым.

Винт, засасывая воду как насос, увеличивает скорость обтекания водой кормовой оконечности судна. Вследствие этого здесь образуется зона пониженного давления, которая тормозит движение судна. Для преодоления этой силы засасывания винт должен развить дополнительный упор. Очевидно, чем полнее обводы и больше осадка судна в районе винта, чем больше диаметр винта и меньше скорость хода, тем больше сила засасывания. Например, на глиссирующем катере она составляет не более 4% основного упора, или тяги, необходимой для движения судна, а на спасательной шлюпке достигает 15—30%.

При работе гребного винта за корпусом судна полезная отдача мощности будет уже характеризоваться не к. п. д. винта, а так называемым пропульсивным коэффициентом:

где ηk — коэффициент влияния корпуса, учитывающий потери мощности из-за влияния попутного потока и засасывания 3 .

Средние значения пропульсивного коэффициента на современных катерах 0,45—0,55.

Заканчивая это первое знакомство с гребным винтом, советуем: исследуйте гребной винт вашей лодки, замерьте его диаметр и шаг, оцените скорость лодки, скольжение винта, число оборотов вала и загрузку двигателя. Вполне может оказаться, что вы найдете возможность сделать лодку более быстроходной.

О том, как подобрать оптимальный винт, мы расскажем в ближайших выпусках сборника.

Примечания

1. Как будет показано ниже, скорость натекающего потока на винт меньше скорости судна.

2. У лопастей с несимметричным профилем, обычно применяющимся Для винтов, упор становится равным нулю при отрицательных углах атаки, т. е. когда поступь несколько превышает геометрический шаг винта. Поступь, при которой упор винта равен нулю, называется гидродинамическим шагом винта или шагом нулевого упора.

3. В некоторых случаях ηk может быть больше единицы.

www.barque.ru

Что нужно знать о гребном винте

Как работает гребной винт? Гребной винт преобразует вращение вала двигателя в упор — силу, толкающую судно вперед. При вращении винта на поверхностях его лопастей, обращенных вперед — в сторону движения судна (засасывающих), создается разрежение, а на обращенных назад (нагнетающих)— повышенное давление воды. В результате разности давлений на лопастях возникает сила Y (ее называют подъемной) Разложив силу на составляющие — одну, направленную в сторону движения судна, а вторую перпендикулярно к нему, получим силу Р, создающую упор гребного винта, и силу Т, образующую крутящий момент, который преодолевается двигателем.

Упор в большой степени зависит от угла атаки a профиля лопасти. Оптимальное значение для быстроходных катерных винтов 4—8°. Если a больше оптимальной величины, то мощность двигателя непроизводительно затрачивается на преодоление большого крутящего момента, если же угол атаки мал, подъемная сила и, следовательно, упор Р будут невелики, мощность двигателя окажется недоиспользованной.

На схеме, иллюстрирующей характер взаимодействия лопасти и воды, a можно представить как угол между направлением вектора скорости набегающего на лопасть потока W и нагнетающей поверхностью. Вектор скорости потока W образован геометрическим сложением векторов скорости поступательного перемещения Va винта вместе с судном и скорости вращения Vr, т. е. скорости перемещения лопасти в плоскости, перпендикулярной оси винта.

Винтовая поверхность лопасти. На рисунке показаны силы и скорости, действующие в каком-то одном определенном поперечном сечении лопасти, расположенном на каком-то определенном радиусе r гребного винта. Окружная скорость вращения V, зависит от радиуса, на котором сечение расположено (Vr = 2 × p × r × n, где n — частота вращения винта, об/с), скорость же поступательного движения винта Va остается постоянной для любого сечения лопасти. Таким образом, чем больше r, т. е. чем ближе расположен рассматриваемый участок к концу лопасти, тем больше окружная скорость Vr, а следовательно, и суммарная скорость W.

Так как сторона Va в треугольнике рассматриваемых скоростей остается постоянной, то по мере удаления сечения лопасти от центра необходимо разворачивать лопасти под большим углом к оси винта, чтобы a сохранял оптимальную величину, т. е. оставался одинаковым для всех сечений. Таким образом, получается винтовая поверхность с постоянным шагом Н. Напомним, что шагом винта называется перемещение любой точки лопасти вдоль оси за один полный оборот винта.

Представить сложную винтовую поверхность лопасти помогает рисунок. Лопасть при работе винта как бы скользит по направляющим угольникам, имеющим на каждом радиусе разную длину основания, но одинаковую высоту — шаг H, и поднимается за один оборот на величину Н. Произведение же шага на частоту вращения (Нn) представляет собой теоретическую скорость перемещения винта вдоль оси.

Скорость судна, скорость винта и скольжение. При движении корпус судна увлекает за собой воду, создавая попутный поток, поэтому действительная скорость встречи винта с водой Va всегда несколько меньше, чем фактическая скорость судна V. У быстроходных глиссирующих мотолодок разница невелика — всего 2 — 5%, так как их корпус скользит по воде и почти не “тянет” ее за собой. У катеров, идущих со средней скоростью хода эта разница составляет 5—8 %, а у тихоходных водоизмещающих глубокосидящих катеров достигает 15—20 %. Сравним теперь теоретическую скорость винта Нn со скоростью его фактического перемещения Va относительно потока воды .

Разность Hn — Va, называемая скольжением, и обуславливает работу по пасти винта под углом атаки a к потоку воды, имеющему скорость W. Отношение скольжения к теоретической скорости винта в процентах называется относительным скольжением:
s = (Hn-Va)/Hn.

Максимальной величины (100 %) скольжение достигает при работе винта на судне, пришвартованном к берегу. Наименьшее скольжение (8—15 %) имеют винты легких гоночных мотолодок на полном ходу; у винтов глиссирующих прогулочных мотолодок и катеров скольжение достигает 15—25%, у тяжелых водоизмещающих катеров 20—40 %, а у парусных яхт, имеющих вспомогательный двигатель, 50 — 70%.

Легкий или тяжелый гребной винт. Диаметр и шаг винта являются важнейшими параметрами, от которых зависит степень использования мощности двигателя, а следовательно, и возможность достижения наибольшей скорости хода судна.

Каждый двигатель имеет свою так называемую внешнюю характеристику — зависимость снимаемой с вала мощности от частоты вращения коленчатого вала при полностью открытом дросселе карбюратора. Такая характеристика для подвесного мотора “Вихрь”, например, показана на рисунке (кривая 1). Максимум мощности в 21,5 л, с. двигатель развивает при 5000 об/мин.

Мощность, которая поглощается на данной лодке гребным винтом в зависимости от частоты вращения мотора, показана на этом же рисунке не одной, а тремя кривыми — винтовыми характеристиками 2, 3 и 4, каждая из которых соответствует определенному гребному винту, т. е. винту определенного шага и диаметра.

При увеличении и шага, и диаметра винта выше оптимальных значений лопасти захватывают и отбрасывают назад слишком большое количество воды: упор при этом возрастает, но одновременно увеличивается и потребный крутящий момент на гребном валу. Винтовая характеристика 2 такого винта пересекается с внешней характеристикой двигателя 1 в точке А. Это означает, что двигатель уже достиг предельного — максимального значения крутящего момента и не в состоянии проворачивать гребной винт с большой частотой вращения, т. е. не развивает номинальную частоту вращения и соответствующую ей номинальную мощность. В данном случае положение точки А показывает, что двигатель отдает всего 12 л. с. мощности вместо 22 л. с. Такой гребной винт называется гидродинамически тяжелым.

Наоборот, если шаг или диаметр винта малы (кривая 4), и упор и потребный крутящий момент будут меньше, поэтому двигатель не только легко разовьет, но и превысит значение номинальной частоты вращения коленвала. Режим его работы будет характеризоваться точкой С. И в этом случае мощность двигателя будет использоваться не полностью, а работа на слишком высоких оборотах сопряжена с опасно большим износом деталей. При этом надо подчеркнуть, что поскольку упор винта невелик, судно не достигнет максимально возможной скорости. Такой винт называется гидродинамически легким.

Гребной винт, позволяющий для конкретного сочетания судна и двигателя полностью использовать мощность последнего, называется согласованным. Для рассматриваемого примера такой согласованный винт имеет характеристику 3, которая пересекается с внешней характеристикой двигателя в точке В, соответствующей его максимальной мощности.

Рисунок иллюстрирует важность правильного подбора винта на примере мотолодки «Крым» с подвесным мотором “Вихрь”, При использовании штатного винта мотора с шагом 300 мм мотолодка с 2 чел. на борту развивает скорость 37 км/ч. С полной нагрузкой 4 чел, скорость лодки снижается до 22 км/ч. При замене винта другим с шагом 264 мм скорость с полной нагрузкой повышается до 32 км/ч. Наилучшие же результаты достигаются с гребным винтом, имеющим шаговое отношение H/D = 1,0 (шаг и диаметр равны 240 мм): максимальная скорость повышается до 40—42 км/ч, скорость с полной нагрузкой — до 38 км/ч. Несложно сделать вывод и о существенной экономии горючего, которую можно получить с винтом уменьшенного шага Если со штатным винтом при нагрузке 400 кг расходуется 400 г горючего на каждый пройденный километр пути, то при установке винта с шагом 240 мм расход горючего составит 237 г/км.

Следует заметить, что согласованных винтов для конкретного сочетания судна и мотора существует бесконечное множество. В самом деле, винт с несколько большим диаметром, но несколько меньшим шагом нагрузит двигатель так же, как и винт с меньшим диаметром и большим шагом. Существует правило: при замене согласованного с корпусом и двигателем гребного винта другим, с близкими величинами D и H (расхождение допустимо не более 10%), требуется, чтобы сумма этих величин для старого и нового винтов была равна.

Однако из этого множества согласованных винтов только один винт, с конкретными значениями D и H, будет обладать наибольшим КПД. Такой винт называется оптимальным. Целью расчёта гребного винта как раз и является нахождение оптимальных величин диаметра и шага.

Коэффициент полезного действия. Эффективность работы гребного винта оценивается величиной его КПД, т. е. отношения полезно используемой мощности к затрачиваемой мощности двигателя.

Не вдаваясь в подробности, отметим, что главным образом КПД некавитирующего винта зависит от относительного скольжения винта, которое в свою очередь определяется соотношением мощности, скорости, диаметра и частоты вращения.

Максимальная величина КПД гребного винта может достигать 70

80 %, однако на практике довольно трудно выбрать оптимальные величины основных параметров, от которых зависит КПД: диаметра и частоты вращения. Поэтому на малых судах КПД реальных винтов может оказаться много ниже, составлять всего 45 %.

Максимальной эффективности гребной винт достигает при относительном скольжении 10 — 30 %. При увеличении скольжения КПД быстро падает: при работе винта в швартовном режиме он становится равным нулю. Подобным же образом КПД уменьшается до нуля, когда вследствие больших оборотов при малом шаге упор винта равен нулю.

Однако следует еще учесть взаимовлияние корпуса и винта. При работе гребной винт захватывает и отбрасывает в корму значительные массы воды, вслед ствие чего скорость потока, обтекающего кормовую часть корпуса повышается, а давление падает. Этому сопутствует явление засасывания, т. е. появление до полнительной силы сопротивления воды движению судна по сравнению с тем, которое оно испытывает при буксировке. Следовательно, винт должен развивать упор, превышающий сопротивление корпуса на некоторую величину Рe = R/(1-t) кг. Здесь t — коэффициент засасывания, величина которого зависит от скорости движения судна и обводов корпуса в районе расположения винта. На глиссирующих катерах и мотолодках, на которых винт расположен под сравнительно плоским днищем и не имеет перед собой ахтерштевня, при скоростях свыше 30 км/ч t = 0,02—0,03. На тихоходных (10—25 км/ч) лодках и катерах, на которых гребной винт установлен за ахтерштевнем, t = 0,06—0,15.

В свою очередь и корпус судна, образуя попутный поток, уменьшает скорость потока воды, натекающей на гребной винт. Это учитывает коэффициент попутного потока w: Va = V (1—w) м/с. Значения w нетрудно определить по данным, приведенным выше.

Общий пропульсивный КПД комплекса судно—двигатель—гребной винт вычисляется по формуле:
h = h p Ч ((1-t)/(1-w)) Ч h m = h p Ч h k Ч h m Здесь h p — КПД винта; h k — коэффициент влияния корпуса; h m — КПД валопровода и реверс — редукторной передачи.

Коэффициент влияния корпуса нередко оказывается больше единицы (1,1 — 1,15), а потери в валопроводе оцениваются величиной 0,9—0,95.

Диаметр и шаг винта. Элементы гребного винта для конкретного судна можно рассчитать, лишь располагая кривой сопротивления воды движению данного судна, внешней характеристикой двигателя и расчетными диаграммами, полученными по результатам модельных испытаний гребных винтов, имеющих определенные параметры и форму лопастей. Для предварительного определения диаметра и шага винта существуют упрощенные формулы, приводить которые здесь нет смысла, т.к. предлагается воспользоваться более точными методами расчёта оптимального винта. Эти методы основаны на апроксимации (приближённом представлении) графических диаграмм аналитическими зависимостями, что позволяет выполнять достаточно точные расчёты на ЭВМ и даже на микрокалькуляторах.

Диаметр гребных винтов, полученный как по приближенной формуле, так и с помощью точных расчетов, обычно увеличивают примерно на 5 % с тем, чтобы получить заведомо тяжелый винт и добиться его согласованности с двигателем при последующих испытаниях судна. Для «облегчения» винта его постепенно подрезают по диаметру до получения номинальных оборотов двигателя при расчетной скорости.

Однако для винтов маломерных судов этого можно и не делать. Причина проста: загрузка прогулочных судов меняется в широких пределах, и винт, немного «тяжеловатый» или «легковатый» при одном значении водоизмещения судна, станет согласованным при другой загрузке.

Кавитация и особенности геометрии гребных винтов малых судов. Высокие скорости движения мотолодок и катеров и частота вращения винтов становятся причиной кавитации — вскипания воды и образования пузырьков паров в области разрежения на засасывающей стороне лопасти. В начальной стадии кавитации эти пузырьки невелики и на работе винта практически не сказываются. Однако когда эти пузырьки лопаются, создаются огромные местные давления, отчего поверхность лопасти выкрашивается. При длительной работе кавитирующего винта такие эрозионные разрушения могут быть настолько значительными, что эффективность винта снизится.

При дальнейшем повышении скорости наступает вторая стадия кавитации. Сплошная полость — каверна, захватывает всю лопасть и даже может замыкаться за ее пределами. Развиваемый винтом упор падает из-за резкого увеличения лобового сопротивления и искажения формы лопастей.

Кавитацию винта можно обнаружить по тому, что скорость лодки перестает расти, несмотря на дальнейшее повышение частоты вращения. Гребной винт при этом издает специфический шум, на корпус передается вибрация, лодка движется скачками.

Момент наступления кавитации зависит не только от частоты вращения но и от ряда других параметров. Так, чем меньше площадь лопастей, больше толщина их профиля и ближе к ватерлинии расположен винт, тем при меньшей частоте вращения, т. е. раньше наступает кавитация. Появлению кавитации способствует также большой угол наклона гребного вала, дефекты лопастей — изгиб, некачественная поверхность.

Упор, развиваемый гребным винтом, практически не зависит от площади лопастей. Наоборот, с увеличением этой площади возрастает трение о воду и на преодоление этого трения дополнительно расходуется мощность двигателя. С другой стороны, надо учесть, что при том же упоре на широких лопастях разрежение на засасывающей стороне меньше, чем на узких. Следовательно, широколопастной винт нужен там, где возможна кавитация (т. е. на быстроходных катерах и при большой частоте вращения гребного вала).

В качестве характеристики винта принимается рабочая, или спрямленная, площадь лопастей. При ее вычислении принимается ширина лопасти, замеренная на нагнетающей поверхности по длине дуги окружности на данном радиусе, проведенном из центра винта. В характеристике винта указывается обычно не сама спрямленная площадь лопастей А, а ее отношение к площади Аd сплошного диска такого же, как винт, диаметра, т. е. A/Ad. На винтах заводского изготовления величина дискового отношения выбита на ступице.

Для винтов, работающих в докавитационном режиме, дисковое отношение принимают в пределах 0,3 — 0,6. У сильно нагруженных винтов на быстроходных катерах с мощными высокооборотными двигателями A/Ad увеличивается до 0,6 — 1,1. Большое дисковое отношение необходимо и при изготовлении винтов из материалов с низкой прочностью, например, из силумина или стеклопластика. В этом случае предпочтительнее сделать лопасти шире, чем увеличить их толщину.

Ось гребного винта на глиссирующем катере расположена сравнительно близко к поверхности воды, поэтому нередки случаи засасывания воздуха к лопастям винта (поверхностная аэрация) или оголения всего винта при ходе на волне. В этих случаях упор винта резко падает, а частота вращения двигателя может превысить максимально допустимую. Для уменьшения влияния аэрации шаг винта делается переменным по радиусу — начиная от сечения лопасти на r = (0,63—0,7) R по направлению к ступице шаг уменьшается на 15

Гребные винты катеров имеют обычно большую частоту вращения, поэтому вследствие больших центробежных скоростей происходит перетекание воды по лопастям в радиальном направлении, что отрицательно сказывается па КПД винта. Для уменьшения этого эффекта лопастям придают значительный наклон в корму —от 10 до 15° .

В большинстве случаев лопастям винтов придается небольшая саблевидность — линия середин сечений лопасти выполняется криволинейной с выпуклостью, направленной по ходу вращения винта. Такие винты благодаря более плавному входу лопастей в воду отличаются меньшей вибрацией лопастей, в меньшей степени подвержены кавитации и имеют повышенную прочность входящих кромок.

Наибольшее распространение среди винтов малых судов получил сегментный плосковыпуклый профиль. Лопасти винтов быстроходных мотолодок и катеров, рассчитанных на скорость свыше 40 км/ч, приходится выполнять возможно более тонкими с тем, чтобы предотвратить кавитацию. Для повышения эффективности в этих случаях целесообразен выпукловогнутый профиль («луночка»). Стрелка вогнутости профиля принимается равной около 2 % хорды сечения а относительная толщина сегментного профиля (отношение толщины t к хорде b на расчетном радиусе винта, равном 0,6R) принимается обычно в пределах t/b = 0,04—0,10.

Двухлопастной гребной винт обладает более высоким КПД, чем трехлопастной, однако при большом дисковом отношении весьма трудно обеспечить необходимую прочность лопасти такого винта. Поэтому наибольшее распространение на малых судах получили трехлопастные винты. Винты с двумя лопастями применяют на гоночных судах, где винт оказывается слабо нагруженным, и на парусно — моторных яхтах, где двигатель играет вспомогательную роль. В последнем случае имеет значение возможность устанавливать винт в вертикальном положении в гидродинамическом следе ахтерштевня для уменьшения его сопротивления при плавании под парусами.

Четырех и пятилопастные винты применяют очень редко, в основном на крупных моторных яхтах для уменьшения шума и вибрации корпуса.

Гребной винт лучше всего работает, когда его ось расположена горизонтально. У винта, установленного с наклоном и в связи с этим обтекаемого «косым» потоком, коэффициент полезного действия всегда будет ниже; это падение КПД сказывается при угле наклона гребного вала к горизонту больше 10°.

www.motolodka.ru

Смотрите так же:

  • Методическое пособие школа россии Методическое пособие школа россии Федоскина О. В.Математика. Сложение и вычитание в пределах 10. 1 класс Глаголева Ю. И.Математика. Проверочные работы. 2 класс Глаголева Ю. И.Математика. Проверочные работы. 1 класс Рыдзе О. А.Математика. […]
  • Прокладка выпускного коллектора фиат альбеа Прокладка выпускного коллектора фиат альбеа СИСТЕМА ВЫПУСКА ОТРАБОТАВШИХ ГАЗОВ Отработавшие газы отводятся из двигателя через катоколлектор (выпускной коллектор, объединенный с нейтрализатором), промежуточную трубу и основной […]
  • Возврат ндфл за медикаменты Налоговый вычет за лечение Разделы: В каких случаях можно получить возврат 13% на лечение? Налоговый вычет на лечение относится к категории социальных налоговых вычетов. На него распространяются общие требования к сроку и порядку […]
  • Свод правил ответ Свод правил Любое движение вперед одного человека или целого сообщества невозможно без следования определенным правилам. Неслучайно в метрологии и стандартизации один из главнейших документов назван сводом правил. Какие же процессы […]
  • Приказ 25 ржд РАСПОРЯЖЕНИЕ ОАО "РЖД" от 25.12.2007 N 2423р (ред. от 04.02.2010) "ОБ УТВЕРЖДЕНИИ ПЕРЕЧНЯ ТИПОВ ЗАПОРНО-ПЛОМБИРОВОЧНЫХ УСТРОЙСТВ, ПРИМЕНЯЕМЫХ ДЛЯ ПЛОМБИРОВАНИЯ ВАГОНОВ И КОНТЕЙНЕРОВ ПРИ ПЕРЕВОЗКАХ ГРУЗОВ, ОСУЩЕСТВЛЯЕМЫХ ОАО "РЖД" (в ред. […]
  • Федеральный закон от 6 октября 1999 г No 184-фз Федеральный закон от 6 октября 1999 г. N 184-ФЗ "Об общих принципах организации законодательных (представительных) и исполнительных органов государственной власти субъектов Российской Федерации" (с изменениями и дополнениями) Федеральный […]

Обсуждение закрыто.