Решение системы по правилу крамера

Метод Крамера. Примеры решения систем линейных алгебраических уравнений методом Крамера.

Метод Крамера предназначен для решения тех систем линейных алгебраических уравнений (СЛАУ), у которых определитель матрицы системы отличен от нуля. Естественно, при этом подразумевается, что матрица системы квадратна (понятие определителя существует только для квадратных матриц). Решение системы уравнений методом Крамера проходит за три шага простого алгоритма:

  1. Составить определитель матрицы системы (его называют также определителем системы), и убедиться, что он не равен нулю, т.е. $\Delta\neq 0$.
  2. Для каждой переменной $x_i$($i=\overline<1,n>$) необходимо составить определитель $\Delta_$, полученный из определителя $\Delta$ заменой i-го столбца столбцом свободных членов заданной СЛАУ.
  3. Найти значения неизвестных по формуле $x_i=\frac<\Delta_>><\Delta>$ ($i=\overline<1,n>$).

Перед переходом к чтению примеров рекомендую ознакомиться с правилами вычисления определителей второго и третьего порядка, изложенными здесь.

Матрица системы такова: $ A=\left( \begin 3 & 2\\ -1 & 5 \end \right) $. Определитель этой матрицы $\Delta=\left| \begin 3 & 2\\ -1 & 5 \end\right|=3\cdot 5-2\cdot(-1)=17$. Как вычисляется определитель второго порядка можете глянуть здесь.

Так как определитель системы не равен нулю, то продолжаем решение методом Крамера. Вычислим значения двух определителей: $\Delta_$ и $\Delta_$. Определитель $\Delta_$ получаем из определителя $\Delta=\left| \begin 3 & 2\\ -1 & 5 \end\right|$ заменой первого столбца (именно первый столбец содержит коэффициенты при $x_1$) столбцом свободных членов $\left(\begin -11\\ 15\end\right)$:

Аналогично, заменяя второй столбец в $\Delta=\left|\begin3&2\\-1&5\end\right|$ столбцом свободных членов, получим:

Теперь можно найти значения неизвестных $x_1$ и $x_2$.

В принципе, можно ещё проверить, правильно ли решена система методом Крамера. Подставим в заданную СЛАУ $x_1=-5$, $x_2=2$:

Проверка пройдена, решение системы уравнений методом Крамера найдено верно. Осталось лишь записать ответ.

Определитель системы: $\Delta=\left| \begin 2 & 1 & -1\\ 3 & 2 & 2 \\ 1 & 0 & 1 \end\right|=4+2+2-3=5$. Как вычисляется определитель третьего порядка можете глянуть здесь.

Заменяя первый столбец в $\Delta$ столбцом свободных членов, получим $\Delta_$:

$$ \Delta_=\left| \begin 3 & 1 & -1\\ -7 & 2 & 2 \\ -2 & 0 & 1 \end\right|=6-4-4+7=5. $$

Заменяя второй столбец в $\Delta$ столбцом свободных членов, получим $\Delta_$:

$$ \Delta_=\left| \begin 2 & 3 & -1\\ 3 & -7 & 2 \\ 1 & -2 & 1 \end\right|=-14+6+6-7-9+8=-10. $$

Заменяя третий столбец в $\Delta$ столбцом свободных членов, получим $\Delta_$:

$$ \Delta_=\left| \begin 2 & 1 & 3\\ 3 & 2 & -7 \\ 1 & 0 & -2 \end\right|=-8-7-6+6=-15. $$

Учитывая все вышеизложенное, имеем:

Метод Крамера завершён. Можно проверить, верно ли решена система уравнений методом Крамера, подставив значения $x_1=1$, $x_2=-2$ и $x_3=-3$ в заданную СЛАУ:

Проверка пройдена, решение системы уравнений методом Крамера найдено верно.

Решить СЛАУ $\left\ <\begin& 2x_1+3x_2-x_3=15;\\ & -9x_1-2x_2+5x_3=-7. \end\right.$ используя метод Крамера.

Матрица системы $ \left( \begin 2 & 3 & -1\\ -9 & -2 & 5 \end \right) $ не является квадратной. Однако это вовсе не означает, что решение системы уравнений методом Крамера невозможно. Преобразуем заданную СЛАУ, перенеся переменную $x_3$ в правые части уравнений:

Теперь матрица системы $ \left( \begin 2 & 3 \\ -9 & -2 \end \right) $ стала квадратной, и определитель её $\Delta=\left| \begin 2 & 3\\ -9 & -2 \end\right|=-4+27=23$ не равен нулю. Применим метод Крамера аналогично предыдущим примерам:

Ответ можно записать в таком виде: $\left\ <\begin& x_1=\frac<13x_3-9><23>;\\ & x_2=\frac<-x_3+121><23>;\\ & x_3\in R. \end\right.$ Переменные $x_1$, $x_2$ – базисные (в иной терминологии – основные), а переменная $x_3$ – свободная (в иной терминологии – неосновная). Проверка, при необходимости, проводится так же, как и в предыдущих примерах.

Матрица системы $\left(\begin 1 & -5 & -1 & -2 & 3 \\ 2 & -6 & 1 & -4 & -2 \\ -1 & 4 & 5 & -3 & 0 \end\right)$ не является квадратной. Преобразуем заданную СЛАУ, перенеся переменные $x_4$, $x_5$ в правые части уравнений, и применим метод Крамера:

Естественно, что применение метода Крамера в случаях вроде того, что рассмотрен в примере №4, не всегда оправдано с точки зрения временных затрат. Мы ведь не можем гарантировать, что после переноса каких-либо переменных в правые части уравнений, определитель системы не будет равен нулю. А перебирать различные варианты – слишком долгий процесс. Гораздо удобнее в таком случае применить метод Гаусса. Я привёл пример №4 лишь с одной целью – показать, что метод Крамера применим вне зависимости от содержимого правых частей уравнений заданной СЛАУ (числа, переменные, функции – не имеет значения). Главное, чтобы определитель матрицы системы был отличен от нуля.

math1.ru

Системы трёх линейных уравнений с тремя неизвестными

Системы трёх линейных уравнений с тремя неизвестными.

Основные методы решения: подстановка, сложение или вычитание.

Определители третьего порядка. Правило Крамера.

Системы трёх линейных уравнений с тремя неизвестными имеют вид:

где a , b , c , d , e , f , g , h , p , q , r , s – заданные числа; x , y , z – неизвестные. Числа a , b , c , e , f , g , p , q , rкоэффициенты при неизвестных; d , h , sсвободные члены . Решение этой системы может быть найдено теми же двумя основными методами, рассмотренными выше: подстановки и сложения или вычитания. Мы же рассмотрим здесь подробно только метод Крамера.

Во-первых, введём понятие определителя третьего порядка. Выражение

называется определителем третьего порядка.

Запоминать это выражение не нужно, так как его легко получить, если переписать таблицу (2), добавив справа первые два столбца. Тогда оно вычисляется путём перемножения чисел, расположенных на диагоналях, идущих от a , b , c – направо ( со знаком « + » ) и от c , a , b – налево ( со знаком « – » ), и затем суммированием этих произведений:

Используя определитель третьего порядка (2), можно получить решение системы уравнений (1) в виде:

Эти формулы и есть правило Крамера для решения системы трёх линейных уравнений с тремя неизвестными.

П р и м е р . Решить методом Крамера систему трёх линейных уравнений с тремя неизвестными:

Р е ш е н и е . Введём следующие обозначения: D — знаменатель в формулах (4),

Dx , Dy , Dz – числители в выражениях для x , y , z – соответственно.

Тогда используя схему (3), получим:

отсюда по формулам Крамера (4): x = Dx / D = 0 / 32 = 0;

y = Dy / D = 32 / 32 = 1; z = Dz / D = 64 / 32 = 2 .

www.bymath.net

Интегрированный урок по теме «Решение систем линейных уравнений методом Крамера»

Цели и задачи урока:

1. Обобщение ЗУН по теме «Электронные таблицы», использование функций MS Excel в работе с матрицами.

1. Рассмотреть применение правила Крамера при решении систем линейных уравнений с использованием информационных технологий.

2. Отработать умение переходить от математической записи выражений к записи в среде электронных таблиц.

3. Продемонстрировать учащимся рациональность использования электронных таблиц для решения систем п линейных уравнений с п неизвестными.

4. Умение и способность самостоятельно работать по теме.

Воспитательные и развивающие:

1. Развитие личностно смыслового отношения к предметам.

2. Развитие творческого и познавательного потенциала лицеистов.

3. Вооружение учащихся правильным методологическим подходом к познавательной и практической деятельности.

На доске написан эпиграф к уроку:

«Не бойтесь формул! Учитесь владеть этим тонким инструментом человеческого гения! В формулах увековечены ценнейшие достижения людского рода, в них заключено величие и могущества разума, его торжество над покоренной природой.»
академик И. И. Артоболевский

(из книги «Машина» под редакцией академика И.И. Артоболевского)

1. Учитель зачитывает цитату, акцентирует внимание учеников на том моменте, что сегодня они познакомятся с формулой Крамера, которая позволяет решать систему n линейных уравнений с n неизвестными.

2. Объяснение нового материала.

Учитель математики рассказывает о методе Крамера.

Когда нам нужно записать сумму двух чисел а и в, мы используем знак + и пишем а+в, и т.д.

Большую роль в математике играет еще одна форма записи алгебраических действий, которая нам понадобится для изучения системы линейных уравнений. Выглядит эта форма записи так: . Четыре числа a, b, c, d записаны в виде таблицы, имеющей две строки (а, b) и (c,d) и два столбца и. Слева и справа стоят вертикальные черточки. Все это выражение употребляется для записи разности ad-bc называется определителем второго порядка.

= ad-bc. Числа a, b, c, d – называются элементами определителя.

Рассмотрим систему уравнений:

(1), тогда главным определителем системы уравнений (1) называется определитель составленный из коэффициентов при неизвестных x и y. Этот определитель мы будем обозначать греческой буквой , очевидно, что .

Первым вспомогательным определителем системы уравнений (1) называется определитель . Он получен из главного определителя этой системы уравнений путем замены первого столбца на столбец свободных членов. Этот определитель мы будем обозначать (индекс при указывает, что в главном определителе первый столбец составленый из коэффициентов при х в системе уравнений (1) заменен на столбец свободных членов ). , .

Возникает естественный вопрос: «Для чего мы познакомились с новой формой записи?».

В ходе беседы учащиеся вспоминают основные способы решения систем уравнений:

  1. метод подстановки;
  2. метод исключения неизвестных (метод Гаусса);
  3. графический метод;
  4. метод сложения.

Существует еще один метод, так называемое правило Крамера.

Теорема. Если главный определитель системы уравнений (1) не равен 0, то система уравнений имеет единственное решение:

.

Это правило названо именем швейцарского математики Крамера (1704 — 1752), который одним из первых пришел к понятию определителя и доказал приведенную здесь теорему в 1750 году в своей работе «Введение в анализ кривых линий». В курсе высшей алгебры вводится понятие определителя порядка n для любого натурального n и излагается метод решения системы n линейных уравнений с n неизвестными с помощью таких определителей. Этот метод очень важен как при решении теоретических вопросов, так и при исследовании систем уравнений с буквенными коэффициентами. Он широко применяется (как и само понятие определителя) не только в высшей алгебре, но и в других разделах высшей математики, в механике и теоретической физике. Однако, для практического решения систем линейных уравнений с числовыми коэффициентами самым экономным (в смысле объема производимых вычислений оказывается метод последовательного исключения неизвестных) именно им часто пользуются на практике. С этим методом мы познакомимся позже, а сегодня научимся применять теорему Крамера при решении систем линейных уравнений с использованием ваших знаний и умений полученных на уроках информатики

Учитель информатики на примере системы трех линейных уравнений с тремя неизвестными показывает запись данной системы на языке электронных таблиц.

Рассмотрим следующую систему уравнений:

Запишем данную систему уравнений на языке электронных таблиц.

Вопросы к учащимся:

  1. Что такое табличный процессор?
  2. Какая информация может храниться в ячейках? (числа, формулы и текст)
  3. Сколько чисел можно внести в ячейку, чтобы в последствии произвести расчеты? (одно число в одну ячейку)

Как вы заметили, при решении систем уравнений методом Крамера, при составлении главного и дополнительных определителей нас интересуют коэффициент при неизвестных. Запишем данную систему в виде таблице состоящую их коэффициентов при х и свободных членов (отделенных от основных чертой).

xn--i1abbnckbmcl9fb.xn--p1ai

Высшая математика (Учеб. пособие). Авторы: Никулина Л.С., Степанова А.А. , редактор: Александрова Л.И.

Рассмотрим систему линейных уравнений

(7)

Система трех уравнений может быть решена по правилу Крамера, рассмотренному выше для системы двух уравнений.

Составим определитель из коэффициентов при неизвестных

.

Назовем его определителем системы. Если D≠0, то система совместна. Далее составим три вспомогательных определителя:

, , .

Решение системы (7) находим по формулам:

, , , (8)

которые называют формулами Крамера.

Пример 6. Решить систему уравнений

Решение. Вычислим определитель системы.

. Система совместна, так как D≠0.

Вычислим теперь вспомогательные определители:

, , .

Тогда , , .

abc.vvsu.ru

Метод Крамера

Метод Крамера часто применяется для систем линейных алгебраических уравнений (СЛАУ). Этот способ решения один из самых простых. Как правило, данный метод применяется только для тех систем, где по количеству неизвестных столько же, сколько и уравнений. Чтобы получилось решить уравнение, главный определитель матрицы не должен равняться нулю.

Габриель Крамер – математик, создатель одноименного метода решения систем линейных уравнений

Габриель Крамер – известный математик, который родился 31 июля 1704 года. Ещё в детстве Габриель поражал своими интеллектуальными способностями, особенно в области математики. Когда Крамеру было 20 лет, он устроился в Женевский университет штатным преподавателем.

Во время путешествия по Европе Габриель познакомился с математиком Иоганном Бернулли, который и стал его наставником. Только благодаря Иоганну, Крамер написал много статей по геометрии, истории математики и философии. А в свободное от работы время изучал математику всё больше и больше.

Наконец-то наступил тот день, когда Крамер нашёл способ, при помощи которого можно было бы легко решать не только лёгкие, но и сложные системы линейных уравнений.

В 1740 году у Крамера были опубликованы несколько работ, где доступно изложено решение квадратных матриц и описан алгоритм, как находить обратную матрицу. Далее математик описывал нахождения линейных уравнений разной сложности, где можно применить его формулы. Поэтому тему так и назвали: «Решение систем линейных уравнений методом Крамера».

Учёный умер в возрасте 48 лет (в 1752 году). У него было ещё много планов, но, к сожалению, он так и не успел их осуществить.

Вывод формулы Крамера

Пусть дана система линейных уравнений такого вида:

где , , – неизвестные переменные, – это числовые коэффициенты, в – свободные члены.

Решением СЛАУ (систем линейных алгебраических уравнение) называются такие неизвестные значения при которых все уравнения данной системы преобразовываются в тождества.

Если записать систему в матричном виде, тогда получается , где

В данной главной матрице находятся элементы, коэффициенты которых при неизвестных переменных,

Это матрица-столбец свободных членов, но есть ещё матрица-столбец неизвестных переменных:

После того, когда найдутся неизвестные переменные, матрица и будет решением системы уравнений, а наше равенство преобразовывается в тождество. . Если умножить , тогда . Получается: .

Если матрица – невырожденная, то есть, её определитель не равняется нулю, тогда у СЛАУ есть только одно единственное решение, которое находится при помощи метода Крамера.

Как правило, для решения систем линейных уравнений методом Крамера, нужно обращать внимания на два свойства, на которых и основан данный метод:

1. Определитель квадратной матрицы равняется сумме произведений элементов любой из строк (столбца) на их алгебраические дополнения:

, здесь – 1, 2, …, n; – 1, 2, 3, …, n.

2. Сумма произведений элементов данной матрицы любой строки или любого столбца на алгебраические дополнения определённых элементов второй строки (столбца) равняется нулю:

,

,

где – 1, 2, …, n; – 1, 2, 3, …, n. .

Итак, теперь можно найти первое неизвестное . Для этого необходимо умножить обе части первого уравнения системы на , части со второго уравнения на , обе части третьего уравнения на и т. д. То есть, каждое уравнение одной системы нужно умножать на определённые алгебраические дополнения первого столбца матрицы :

Теперь прибавим все левые части уравнения, сгруппируем слагаемые, учитывая неизвестные переменные и приравняем эту же сумму к сумме правых частей системы уравнения:

.

Можно обратиться к вышеописанным свойствам определителей и тогда получим:

И предыдущее равенство уже выглядит так:

Откуда и получается .

Аналогично находим . Для этого надо умножить обе части уравнений на алгебраические дополнения, которые находятся во втором столбце матрицы .

Теперь нужно сложить все уравнения системы и сгруппировать слагаемые при неизвестных переменных. Для этого вспомним свойства определителя:

Откуда получается .

Аналогично находятся все остальные неизвестные переменные.

тогда получаются формулы, благодаря которым находятся неизвестные переменные методом Крамера:

, , .

Замечание.

Тривиальное решение при может быть только в том случае, если система уравнений является однородной . И действительно, если все свободные члены нулевые, тогда и определители равняются нулю, так как в них содержится столбец с нулевыми элементами. Конечно же, тогда формулы , , дадут

Метод Крамера – теоремы

Прежде чем решать уравнение , необходимо знать:

  1. теорему аннулирования;
  2. теорему замещения.

Теорема замещения

Сумма произведений алгебраических дополнений любого столбца (строки) на произвольные числа равняется новому определителю, в котором этими числами заменены соответствующие элементы изначального определителя, что отвечают данным алгебраическим дополнениям.

=

где – алгебраические дополнения элементов первого столбца изначального определителя:

Теорема аннулирования

Сумма произведений элементов одной строки (столбца) на алгебраические дополнения соответствующих элементов другой строки (столбца) равняется нулю.

Алгоритм решения уравнений методом Крамера

Метод Крамера – простой способ решения систем линейных алгебраических уравнений. Такой вариант применяется исключительно к СЛАУ, у которых совпадает количество уравнений с количеством неизвестных, а определитель отличен от нуля.

Итак, когда выучили все этапы, можно переходить к самому алгоритму решения уравнений методом Крамера. Запишем его последовательно:

Шаг 1. Вычисляем главный определитель матрицы

и необходимо убедиться, что определитель отличен от нуля (не равен нулю).

Шаг 2. Находим определители

Это и есть определители матриц, которые получались из матрицы при замене столбцов на свободные члены.

Шаг 3. Вычисляем неизвестные переменные

Теперь вспоминаем формулы Крамера, по которым вычисляем корни (неизвестные переменные):

, , .

Шаг 4. Выполняем проверку

Выполняем проверку решения при помощи подстановки в исходную СЛАУ. Абсолютно все уравнения в системе должны быть превращены в тождества. Также можно высчитать произведение матриц . Если в итоге получилась матрица, которая равняется , тогда система решена правильно. Если же не равняется , скорей всего в одном из уравнений есть ошибка.

Давайте для начала рассмотрим систему двух линейных уравнений, так как она более простая и поможет понять, как правильно использовать правило Крамера. Если вы поймёте простые и короткие уравнения, тогда сможете решить более сложные системы трёх уравнений с тремя неизвестными.

Кроме всего прочего, есть системы уравнений с двумя переменными, которые решаются исключительно благодаря правилу Крамеру.

Итак, дана система двух линейных уравнений:

Для начала вычисляем главный определитель (определитель системы):

Значит, если , тогда у системы или много решений, или система не имеет решений. В этом случае пользоваться правилом Крамера нет смысла, так как решения не получится и нужно вспоминать метод Гаусса, при помощи которого данный пример решается быстро и легко.

В случае, если , тогда у система есть всего одно решение, но для этого необходимо вычислить ещё два определителя и найти корни системы.

Часто на практике определители могут обозначаться не только , но и латинской буквой , что тоже будет правильно.

Корни уравнения найти просто, так как главное, знать формулы:

,

Так как мы смогли решить систему двух линейных уравнений, теперь без проблем решим и систему трёх линейных уравнений, а для этого рассмотрим систему:

Здесь алгебраические дополнения элементов – первый столбец . Во время решения не забывайте о дополнительных элементах. Итак, в системе линейных уравнений нужно найти три неизвестных – при известных других элементах.

Создадим определитель системы из коэффициентов при неизвестных:

Умножим почленно каждое уравнение соответственно на , , – алгебраические дополнения элементов первого столбца (коэффициентов при ) и прибавим все три уравнения. Получаем:

Согласно теореме про раскладывание, коэффициент при равняется . Коэффициенты при и будут равняться нулю по теореме аннулирования. Правая часть равенства по теореме замещения даёт новый определитель, который называется вспомогательным и обозначается

После этого можно записать равенство:

Для нахождения и перемножим каждое из уравнений изначальной системы в первом случае соответственно на , во втором – на и прибавим. Впоследствии преобразований получаем:

,

Если , тогда в результате получаем формулы Крамера:

= , = , =

Порядок решения однородной системы уравнений

Отдельный случай – это однородные системы:

Среди решений однородной системы могут быть, как нулевые решения , так и решения отличны от нуля.

Если определитель однородной системы (3) отличен от нуля , тогда у такой системы может быть только одно решение.

Действительно, вспомогательные определители , как такие у которых есть нулевой столбец и поэтому, за формулами Крамера

Если у однородной системы есть отличное от нуля решение, тогда её определитель равняется нулю

Действительно, пусть одно из неизвестных , например, , отличное от нуля. Согласно с однородностью Равенство (2) запишется: . Откуда выплывает, что

Примеры решения методом Крамера

Рассмотрим на примере решение методом Крамера и вы увидите, что сложного ничего нет, но будьте предельно внимательно, так как частые ошибки в знаках приводят к неверному ответу.

Задача

Решить систему линейных уравнений методом Крамера:

Решение

Первое, что надо сделать – вычислить определитель матрицы:

Как видим, , поэтому по теореме Крамера система имеет единственное решение (система совместна). Далее нужно вычислять вспомогательные определители. Для этого заменяем первый столбец из определителя на столбец свободных коэффициентов. Получается:

Аналогично находим остальные определители:

,

.

Ответ

, .

Задача

Решить систему уравнений методом Крамера:

Решение

Ответ

= = = = = =

Проверка

* = * = =

* = * = =

* = * = =

Уравнение имеет единственное решение.

Ответ

= = =

Задача

Решить систему методом Крамера

Решение

Как вы понимаете, сначала находим главный определитель:

Как мы видим, главный определитель не равняется нулю и поэтому система имеет единственное решение. Теперь можно вычислить остальные определители:

При помощи формул Крамера находим корни уравнения:

, , .

Чтобы убедиться в правильности решения, необходимо сделать проверку:

Как видим, подставив в уравнение решённые корни, у нас ответ получился тот же, что и в начале задачи, что говорит о правильном решении уравнений.

Ответ

Система уравнений имеет единственное решение: , , .

Есть примеры, когда уравнение решений не имеет. Это может быть в том случае, когда определитель системы равен нулю, а определители при неизвестных неравны нулю. В таком случае говорят, что система несовместна, то есть не имеет решений. Посмотрим на следующем примере, как такое может быть.

Задача

Решить систему линейных уравнений методом Крамера:

Решение

Как и в предыдущих примерах находим главный определитель системы:

В этой системе определитель равняется нулю, соответственно, система несовместна и определенна или же несовместна и не имеет решений. Чтобы уточнить, надо найти определители при неизвестных так, как мы делали ранее:

Мы нашли определители при неизвестных и увидели, что все они не равны нулю. Поэтому система несовместна и не имеет решений.

Ответ

Система не имеет решений.

Часто в задачах на системы линейных уравнений встречаются такие уравнения, где есть не одинаковые буквы, то есть, кроме букв, которые обозначают переменные, есть ещё и другие буквы и они обозначают некоторое действительное число. На практике к таким уравнениям и системам уравнений приводят задачи на поиск общих свойств каких-либо явлений и предметов. То есть, изобрели вы какой-либо новый материал или устройство, а для описания его свойств, общих независимо от величины или количества экземпляра, нужно решить систему линейных уравнений, где вместо некоторых коэффициентов при переменных – буквы. Давайте и рассмотрим такой пример.

Задача

Решить систему линейных уравнений методом Крамера:

Решение

В этом примере – некоторое вещественное число. Находим главный определитель:

Находим определители при неизвестных:

Используя формулы Крамера, находим:

, .

Ответ

,

.

И наконец, мы перешли к самой сложной системе уравнений с четырьмя неизвестными. Принцип решения такой же, как и в предыдущих примерах, но в связи с большой системой можно запутаться. Поэтому рассмотрим такое уравнение на примере.

Задача

Найти систему линейных уравнений методом Крамера:

Здесь действуют система определителей матрицы высших порядков, поэтому вычисления и формулы рассмотрены в этой теме, а мы сейчас просто посчитаем систему уравнений с четырьмя неизвестными.

Решение

В изначальном определители из элементов второй строки мы отнимали элементы четвёртой строки, а из элементов третьей строки отнимались элементы четвёртой строки, которые умножались на 2. Также отнимали из элементов четвёртой строки элементы первой строки, умноженной на два. Преобразования первоначальных определителей при трёх первых неизвестных произведены по такой же схеме. Теперь можно находить определители при неизвестных:

Для преобразований определителя при четвёртом неизвестном из элементов первой строки мы вычитали элементы четвёртой строки.

Теперь по формулам Крамера нужно найти:

,

,

,

.

Ответ

Итак, мы нашли корни системы линейного уравнения:

,

,

,

.

Подведём итоги

При помощи метода Крамера можно решать системы линейных алгебраических уравнений в том случае, если определитель не равен нулю. Такой метод позволяет находить определители матриц такого порядка, как на благодаря формулам Крамера, когда нужно найти неизвестные переменные. Если все свободные члены нулевые, тогда их определители равны нулю, так как в них содержится столбец с нулевыми элементами. И конечно же, если определители равняются нулю, лучше решать систему методом Гаусса, а не Крамера, только тогда ответ будет верный.

Рекомендуем почитать для общего развития

Решение методом Крамера в Excel

nauchniestati.ru

Смотрите так же:

  • Приказ от 31122010 199н Федеральное казначейство 109097, г. Москва, ул.Ильинка, д.7 официальный сайт Казначейства Россииwww.roskazna.ru Приказ Министерства финансов Российской Федерации от 31.12.2010 №199н "Об утверждении Правил обеспечения наличными деньгами […]
  • Прототипное наследование Наследование классов в JavaScript Наследование на уровне объектов в JavaScript, как мы видели, реализуется через ссылку __proto__ . Теперь поговорим о наследовании на уровне классов, то есть когда объекты, создаваемые, к примеру, через […]
  • Правила написания окончания Правила прибавления окончаний –ing к глаголам. Spelling of endings –ing Окончание -ing прибавляется к глаголам для образования причастия настоящего времени (Present Participle) и герундия, которые одинаковы по форме (-ing form), но […]
  • Разрешение принтера для печати фотографии 7 лучших принтеров для печати фотографий На сегодняшний день среди принтеров и МФУ для печати фотографий наибольший интерес представляет продукция компаний Epson и Canon. Если не рассматривать простейшие четырехцветные системы, то […]
  • Права собственности на жилье в россии Как зарегистрировать право собственности на квартиру? Право собственности на недвижимые вещи подлежит государственной регистрации в едином государственном реестре (ЕГРН) и возникает с момента внесения соответствующей записи в данный […]
  • Почтовый адрес арбитражного суда Арбитражный суд Краснодарского края 18 июля 2018 года состоялось совещание судей и работников аппарата Арбитражного суда Краснодарского края по итогам работы за 6 месяцев 2018 года Состоялись плановые учебные занятия с работниками […]

Обсуждение закрыто.