Правило нахождения силы лоренца

Формула силы Лоренца

Сила Лоренца – сила, действующая на точечную заряженную частицу, движущуюся в магнитном поле.

Она равна произведению заряда, модуля скорости частицы, модуля вектора индукции магнитного поля и синуса угла между вектором магнитного поля и скоростью движения частицы.

Здесь – сила Лоренца, – заряд частицы, – модуль вектора индукции магнитного поля, – скорость частицы, – угол между вектором индукции магнитного поля и направления движения.

Единица измерения силы – Н (ньютон).

Сила Лоренца — векторная величина. Сила Лоренца принимает своё наибольшее значение когда векторы индукции и направления скорости частицы перпендикулярны ().

Направление силы Лоренца определяют по правилу левой руки:

Если вектор магнитной индукции входит в ладонь левой руки и четыре пальца вытянуты в сторону направления вектора движения тока, тогда отогнутый в сторону большой палец показывает направление силы Лоренца.

В однородном магнитном поле частица будет двигаться по окружности, при этом сила Лоренца будет центростремительной силой. Работа при этом не будет совершаться.

ru.solverbook.com

Правило нахождения силы лоренца

1.18. Сила Лоренца

Сила Ампера, действующая на отрезок проводника длиной Δ l с силой тока I , находящийся в магнитном поле B ,

Пусть концентрация носителей свободного заряда в проводнике есть n , а q – заряд носителя. Тогда произведение n q υ S , где υ – модуль скорости упорядоченного движения носителей по проводнику, а S – площадь поперечного сечения проводника, равно току, текущему по проводнику:

Выражение для силы Ампера можно записать в виде:

Так как полное число N носителей свободного заряда в проводнике длиной Δ l и сечением S равно n S Δ l , то сила, действующая на одну заряженную частицу, равна

Эту силу называют силой Лоренца . Угол α в этом выражении равен углу между скоростью и вектором магнитной индукции Направление силы Лоренца, действующей на положительно заряженную частицу, так же, как и направление силы Ампера, может быть найдено по правилу левой руки или по правилу буравчика. Взаимное расположение векторов , и для положительно заряженной частицы показано на рис. 1.18.1.

Сила Лоренца направлена перпендикулярно векторам и

При движении заряженной частицы в магнитном поле сила Лоренца работы не совершает. Поэтому модуль вектора скорости при движении частицы не изменяется.

Если заряженная частица движется в однородном магнитном поле под действием силы Лоренца, а ее скорость лежит в плоскости, перпендикулярной вектору то частица будет двигаться по окружности радиуса

Сила Лоренца в этом случае играет роль центростремительной силы (рис. 1.18.2).

Период обращения частицы в однородном магнитном поле равен

Это выражение показывает, что для заряженных частиц заданной массы m период обращения не зависит от скорости υ и радиуса траектории R .

Угловая скорость движения заряженной частицы по круговой траектории

Между полюсами сильного электромагнита помещается вакуумная камера, в которой находятся два электрода в виде полых металлических полуцилиндров ( дуантов ). К дуантам приложено переменное электрическое напряжение, частота которого равна циклотронной частоте . Заряженные частицы инжектируются в центре вакуумной камеры. Частицы ускоряются электрическим полем в промежутке между дуантами. Внутри дуантов частицы движутся под действием силы Лоренца по полуокружностям, радиус которых растет по мере увеличения энергии частиц. Каждый раз, когда частица пролетает через зазор между дуантами, она ускоряется электрическим полем. Таким образом, в циклотроне, как и во всех других ускорителях, заряженная частица ускоряется электрическим полем, а удерживается на траектории магнитным полем. Циклотроны позволяют ускорять протоны до энергии порядка 20 МэВ .

Однородные магнитные поля используются во многих приборах и, в частности, в масс-спектрометрах – устройствах, с помощью которых можно измерять массы заряженных частиц – ионов или ядер различных атомов. Масс-спектрометры используются для разделения изотопов, то есть ядер атомов с одинаковым зарядом, но разными массами (например, 20 Ne и 22 Ne). Простейший масс-спектрометр показан на рис. 1.18.4. Ионы, вылетающие из источника S , проходят через несколько небольших отверстий, формирующих узкий пучок. Затем они попадают в селектор скоростей , в котором частицы движутся в скрещенных однородных электрическом и магнитном полях . Электрическое поле создается между пластинами плоского конденсатора, магнитное поле – в зазоре между полюсами электромагнита. Начальная скорость заряженных частиц направлена перпендикулярно векторам и

На частицу, движущуюся в скрещенных электрическом и магнитном полях, действуют электрическая сила и магнитная сила Лоренца. При условии E = υ B эти силы точно уравновешивают друг друга. Если это условие выполняется, частица будет двигаться равномерно и прямолинейно и, пролетев через конденсатор, пройдет через отверстие в экране. При заданных значениях электрического и магнитного полей селектор выделит частицы, движущиеся со скоростью υ = E / B .

Далее частицы с одним и тем же значением скорости попадают в камеру масс-спектрометра, в которой создано однородное магнитное поле Частицы движутся в камере в плоскости, перпендикулярной магнитному полю, под действием силы Лоренца. Траектории частиц представляют собой окружности радиусов R = m υ / qB’ . Измеряя радиусы траекторий при известных значениях υ и B’ можно определить отношение q / m . В случае изотопов ( q 1 = q 2 ) масс-спектрометр позволяет разделить частицы с разными массами.

Современные масс-спектрометры позволяют измерять массы заряженных частиц с точностью выше 10 –4 .

Если скорость частицы имеет составляющую вдоль направления магнитного поля, то такая частица будет двигаться в однородном магнитном поле по спирали. При этом радиус спирали R зависит от модуля перпендикулярной магнитному полю составляющей υ вектора а шаг спирали p – от модуля продольной составляющей υ|| (рис. 1.18.5).

Таким образом, траектория заряженной частицы как бы навивается на линии магнитной индукции. Это явление используется в технике для магнитной термоизоляции высокотемпературной плазмы , то есть полностью ионизированного газа при температуре порядка 10 6 K. Вещество в таком состоянии получают в установках типа «Токамак» при изучении управляемых термоядерных реакций. Плазма не должна соприкасаться со стенками камеры. Термоизоляция достигается путем создания магнитного поля специальной конфиругации. В качестве примера на рис. 1.18.6 изображена траектория движения заряженной частицы в магнитной «бутылке» (или ловушке ).

Аналогичное явление происходит в магнитном поле Земли, которое является защитой для всего живого от потоков заряженных частиц из космического пространства. Быстрые заряженные частицы из космоса (главным образом от Солнца) «захватываются» магнитным полем Земли и образуют так называемые радиационные пояса (рис. 1.18.7), в которых частицы, как в магнитных ловушках, перемещаются туда и обратно по спиралеобразным траекториям между северным и южным магнитными полюсами за времена порядка долей секунды. Лишь в полярных областях некоторая часть частиц вторгается в верхние слои атмосферы, вызывая полярные сияния. Радиационные пояса Земли простираются от расстояний порядка 500 км до десятков земных радиусов. Следует вспомнить, что южный магнитный полюс Земли находится вблизи северного географического полюса (на северо-западе Гренландии). Природа земного магнетизма до сих пор не изучена.

physics.ru

Объединение учителей Санкт-Петербурга

Основные ссылки

Сила Ампера. Сила Лоренца.

Сила Ампера.

Действие магнитного поля на проводник с током

Сила, действующая на проводник с током в магнитном поле, называется силой Ампера.

Сила действия однородного маг­нитного поля на проводник с током прямо пропорциональна силе тока, длине проводника, модулю вектора индукции магнитного поля, синусу угла между вектором индукции магнитного поля и проводником:

F=B . I . . sin α — закон Ампера.

Направление силы Ампера (правило левой руки) Если левую руку расположить так, чтобы перпендикулярная составляющая вектора В входила в ладонь, а четыре вытянутых пальца были направлены по направлению тока, то отогнутый на 90° большой палец покажет направление силы, действующей на проводник с током.

Действие магнитного поля на движущийся заряд.

Сила, действующая на заряженную движущуюся частицу в магнитном поле, называется силой Лоренца:

Направление силы Лоренца (правило левой руки) Направление F определяется по правилу левой руки : вектор F перпендикулярен векторам В и v ..

Правило левой руки сформулировано для положительной частицы. Сила, действующая на отрицательный заряд будет направлена в противоположную сторону по сравнению сположительным.

Если вектор v частицы перпендикулярен вектору В , то частица описывает траекторию в виде окружности:

Роль центростремительной силы играет сила Лоренца:

При этом радиус окружности: ,

а период обращения

не зависит от радиуса окружности!

Если вектор скорости и частицы не перпендикулярен В, то частица описывает траекторию в виде винтовой линии (спирали).

Действие магнитного поля на рамку с током

На рамку действует пара сил, в результате чего она поворачивается.

  1. Направление вектора силы – правилу левой руки.
  2. F=BIlsinα=ma
  3. M=Fd=BISsinα — вращающий момент

Устройство электроизмерительных приборов

1.Магнитоэлектрическая система:

1 — рамка с током; 2 — постоянный магнит; 3 спиральные пружины; 4 клеммы;

5 подшипники и ось; 6 стрелка; 7 — шкала (равномерная)

Принцип действия: взаимодействие рамки с током и поля магнита.

Угол поворота рамки и стрелки

2. Электромагнитная система:

1 — не­подвижная катушка; 2 — щель (магнит­ное поле); 3 — ось с подшипниками;

4 — сердечник; 5 — стрелка; 6 -шкала; 7 — спиральная пружина

Принцип действия: взаимодействие магнитного поля катушки со стальным сердечником, где Fмаг

Использование силы Лоренца

В циклических ускорителях: 1 — вакуум­ная камера; 2 и 3 – дуанты;

4 — источник заряженных частиц; 5 — мишень.

В циклотроне магнитное поле управляет движением заряженной частицы. Период обращения частицы в цикло­троне: .

Т не зависит от R и υ!

Электрическое поле между дуантами разгоняет частицы, а магнитное поворачивает поток частиц. В момент попадания частиц в ускоряющий промежуток направление электрического поля меняется так, чтобы оно всегда увеличивало скорость частиц.

Схема действия масс-спектрографа Для выделения частиц с одинаковой скоростью используют взаимно перпендикулярные магнитные ( B1 ) и электрические ( E ) поля. Тогда .

Т.к. , то удельный заряд , следовательно

можно определить удельный заряд частицы, заряд. массу.

Движение заряженных частиц в магнитном поле Земли. Вблизи магнитных полюсов Земли космические заряженные частицы движутся по спирали (с ускорением) Одно из основных положений теории Максвелла говорит о том, что заряженная частица, движущаяся с ускорением, является источником электромагнитных волн — возникает т.н. синхротронное излучение. Столкновение заряженных частиц с атомами и молекулами из верхних слоев атмосферы приводит к возникновению полярных сияний.

www.eduspb.com

1.4. Сила Лоренца. Правило левой руки для определения направления силы Лоренца

Силу, действующую на движущуюся заряженную частицу со стороны магнитного поля, называют силой Лоренца. Опытным путём установлено, что сила, действующая в магнитном поле на заряд , перпендикулярна векторами, а ее модуль определяется формулой:

,

где – угол между векторами и.

Направление силы Лоренца определяется правилом левой руки (рис. 6):

если вытянутые пальцы расположить по направлению скорости положительного заряда, а силовые линии магнитного поля будут входить в ладонь, то отогнутый большой палец укажет направление силы , действующей на заряд со стороны магнитного поля.

Для отрицательного заряда направление следует изменить на противоположное.

Рис. 6. Правило левой руки для определения направления силы Лоренца.

1.5. Сила Ампера. Правило левой руки для определения направления силы Ампера

Экспериментально установлено, что на проводник с током, находящийся в магнитном поле, действует сила, получившая название силы Ампера (см. п. 1.3.). Направление силы Ампера (рис. 4) определяется правилом левой руки (см. п. 1.3).

Модуль силы Ампера вычисляется по формуле

,

где – сила тока в проводнике,— индукция магнитного поля,— длина проводника,— угол между направлением тока и вектором.

1.6. Магнитный поток

Магнитным потоком сквозь замкнутый контур называется скалярная физическая величина, равная произведению модуля вектора на площадьконтура и на косинус угла между вектором и нормалью к контуру (рис. 7):

Рис. 7. К понятию магнитного потока

Магнитный поток наглядно можно истолковать как величину, пропорциональную числу линий магнитной индукции, пронизывающих поверхность площадью .

Единицей магнитного потока является вебер .

Магнитный поток в 1 Вб создается однородным магнитным полем с индукцией 1 Тл через поверхность площадью 1 м 2 , расположенную перпендикулярно вектору магнитной индукции:

2. Электромагнитная индукция

2.1. Явление электромагнитной индукции

В 1831г. Фарадей обнаружил физическое явление, получившее название явления электромагнитной индукции (ЭМИ), заключающееся в том, что при изменении магнитного потока, пронизывающего контур, в нем возникает электрический ток. Полученный Фарадеем ток называется индукционным.

Индукционный ток можно получить, например, если постоянный магнит вдвигать внутрь катушки, к которой присоединен гальванометр (рис. 8, а). Если магнит вынимать из катушки, возникает ток противоположного направления (рис. 8, б).

Индукционный ток возникает и в том случае, когда магнит неподвижен, а движется катушка (вверх или вниз), т.е. важна лишь относительность движения.

Но не при всяком движении возникает индукционный ток. При вращении магнита вокруг его вертикальной оси тока нет, т.к. в этом случае магнитный поток сквозь катушку не изменяется (рис. 8, в), в то время как в предыдущих опытах магнитный поток меняется: в первом опыте он растет, а во втором – уменьшается (рис. 8, а, б).

Направление индукционного тока подчиняется правилу Ленца:

возникающий в замкнутом контуре индукционный ток всегда направлен так, чтобы создаваемое им магнитное поле противодействовало причине, его вызывающей.

Индукционный ток препятствует внешнему потоку при его увеличении и поддерживает внешний поток при его убывании.

studfiles.net

Правило нахождения силы лоренца

Формулировки экспериментального закона: 1. Заряженная частица в магнитном поле может изменять направление своего движения под действием магнитных сил, которые называются силами Лоренца. 2. В случае, когда заряженная частица движется и в магнитном, и в электрическом полях, результирующую силу называют обобщенной силой Лоренца.

Формула экспериментальной связи физических величин и словесное изложение формулы: Рассмотрим движение заряженной частицы только в магнитном поле: FЛ=Q[v,B], FЛ = QB∙ʋ∙sinα. Сила Лоренца пропорциональна следующим величинам: заряду частицы, ее скорости, индукции магнитного поля и синусу угла между вектором скорости движения частицы и направлением вектора магнитной индукции. Для определения направления силы Лоренца только для случая прямого угла между указанными векторами используется правило левой руки: если левую руку расположить так, чтобы силовые линии входили в ладонь, а четыре пальца указывали направление скорости положительно заряженных частиц, то отогнутый большой палец покажет направление силы Лоренца.

Правило определения направления силы Лоренца с помощью левой руки дано для положительно заряженной частицы. Если знак заряда частицы — отрицательный, направление силы Лоренца обратно тому, которое определено с помощью правила левой руки.

Расшифровка формулы: Q – заряд частицы; B – величина индукции магнитного поля; ʋ – модуль скорости частицы; α – угол между направлением вектора магнитной индукции и вектором скорости частицы. Если движется положительно заряженная частица, тонаправление силы Лоренца определяется по правилу левой руки. Если заряд частицы отрицательный, то направление силы Лоренца обратно тому, которое определено с помощью правила левой руки.

Смысл константы (фундаментальная / нефундаментальная): новой константы не возникает. (Силу Лоренца можно считать определением магнитной индукции, как и силу Ампера. Но эксперимент легче поставить для тока, чем для движения одной заряженной частицы. Поэтому для определения магнитной индукции мы выберем силу Ампера).

Условия применения закона: применяется всегда.

il.tpu.ru

Смотрите так же:

  • Жалоба на судоисполнителей Куда жаловаться на судебных приставов? Куда жаловаться на судебных приставов – такой вопрос нередко возникает у граждан, пытающихся вернуть долги при помощи судебных приставов-исполнителей. Конечного результата от приставов можно ждать […]
  • Отказ в назначении трудовой пенсии по старости ЧТО ВАЖНО ЗНАТЬ О НОВОМ ЗАКОНОПРОЕКТЕ О ПЕНСИЯХ Подписка на новости Письмо для подтверждения подписки отправлено на указанный вами e-mail. 08 августа 2016 Причин может быть несколько: либо не хватило трудового стажа, либо уровень […]
  • Следственный комитет комсомольск на амуре Комсомольский-на-Амуре следственный отдел на транспорте Адрес: 681013, Хабаровский край, г. Комсомольск-на-Амуре, ул. Красногвардейская, 34 Телефон: тел/факс 8 (4217) 54-36-88 Руководитель: Кутиков Дмитрий Сергеевич Заместитель […]
  • Претензия заказчику об оплате Претензия по оплате договора Зачастую претензия по оплате договора направляется, так как предусмотрен досудебный порядок урегулирования спора. А значит подготовка претензии, в том числе с требованием оплатить цену договора, — обязательное […]
  • Получение субсидии по смерти Порядок оформления пособия на погребение Смерть близкого человека еще никогда не приносила радости. Но, как бы ни было плохо, необходимо всегда знать о том, как получить пособие на погребение? Кто может получить эту выплату? Кто […]
  • Величина ставки налога на прибыль равна Расчет и ставки налога на прибыль организаций в России Величина налога на прибыль зависит не только от размера самой прибыли, которую каждая компания стремиться сделать максимально возможной. При расчете суммы данного налога влияние […]

Обсуждение закрыто.