Правила синуса косинуса тангенса

Правила синуса косинуса тангенса

Синус, косинус, тангенс, котангенс острого угла. Тригонометрические функции.

Синус острого угла α прямоугольного треугольника – это отношение противолежащего катета к гипотенузе.
Обозначается так: sin α.

Косинус острого угла α прямоугольного треугольника – это отношение прилежащего катета к гипотенузе.
Обозначается так: cos α.


Тангенс
острого угла α – это отношение противолежащего катета к прилежащему катету.
Обозначается так: tg α.

Котангенс острого угла α – это отношение прилежащего катета к противолежащему.
Обозначается так: ctg α.

Синус, косинус, тангенс и котангенс угла зависят только от величины угла.

Правила:

Катет b, противолежащий углу α, равен произведению гипотенузы на sin α:

Катет a, прилежащий к углу α, равен произведению гипотенузы на cos α:

Катет b, противоположный углу α, равен произведению второго катета на tg α:

Катет a, прилежащий к углу α, равен произведению второго катета на ctg α:

Основные тригонометрические тождества в прямоугольном треугольнике:

(α – острый угол, противолежащий катету b и прилежащий к катету a. Сторона с – гипотенуза. β – второй острый угол).

sin 2 α + cos 2 α = 1

1
1 + tg 2 α = ——
cos 2 α

1
1 + ctg 2 α = ——
sin 2 α

1 1
1 + —— = ——
tg 2 α sin 2 α

sin α
tg α = ——
cos α


При возрастании острого угла
sin α и tg α возрастают, а cos α убывает.


Для любого острого угла α:

sin (90° – α) = cos α

cos (90° – α) = sin α

Пусть в прямоугольном треугольнике АВС
АВ = 6,
ВС = 3,
угол А = 30º.

Выясним синус угла А и косинус угла В.

1) Сначала находим величину угла В. Тут все просто: так как в прямоугольном треугольнике сумма острых углов равна 90º, то угол В = 60º:

В = 90º – 30º = 60º.

2) Вычислим sin A. Мы знаем, что синус равен отношению противолежащего катета к гипотенузе. Для угла А противолежащим катетом является сторона ВС. Итак:

BC 3 1
sin A = —— = — = —
AB 6 2

3) Теперь вычислим cos B. Мы знаем, что косинус равен отношению прилежащего катета к гипотенузе. Для угла В прилежащим катетом является все та же сторона ВС. Это значит, что нам снова надо разделить ВС на АВ – то есть совершить те же действия, что и при вычислении синуса угла А:

BC 3 1
cos B = —— = — = —
AB 6 2

В итоге получается:
sin A = cos B = 1/2.

sin 30º = cos 60º = 1/2.

Из этого следует, что в прямоугольном треугольнике синус одного острого угла равен косинусу другого острого угла – и наоборот. Именно это и означают наши две формулы:
sin (90° – α) = cos α
cos (90° – α) = sin α

Убедимся в этом еще раз:

1) Пусть α = 60º. Подставив значение α в формулу синуса, получим:
sin (90º – 60º) = cos 60º.
sin 30º = cos 60º.

2) Пусть α = 30º. Подставив значение α в формулу косинуса, получим:
cos (90° – 30º) = sin 30º.
cos 60° = sin 30º.

(Подробнее о тригонометрии — см.раздел Алгебра)

raal100.narod.ru

Синус, косинус и тангенс острого угла прямоугольного треугольника

Изучение тригонометрии мы начнем с прямоугольного треугольника. Определим, что такое синус и косинус, а также тангенс и котангенс острого угла. Это основы тригонометрии.

Напомним, что прямой угол — это угол, равный 90 градусов. Другими словами, половина развернутого угла.

Острый угол — меньший 90 градусов.

Тупой угол — больший 90 градусов. Применительно к такому углу «тупой» — не оскорбление, а математический термин 🙂

Нарисуем прямоугольный треугольник. Прямой угол обычно обозначается . Обратим внимание, что сторона, лежащая напротив угла, обозначается той же буквой, только маленькой. Так, сторона, лежащая напротив угла A, обозначается .

Угол обозначается соответствующей греческой буквой .

Гипотенуза прямоугольного треугольника — это сторона, лежащая напротив прямого угла.

Катеты — стороны, лежащие напротив острых углов.

Катет , лежащий напротив угла , называется противолежащим (по отношению к углу ). Другой катет , который лежит на одной из сторон угла , называется прилежащим.

Синус острого угла в прямоугольном треугольнике — это отношение противолежащего катета к гипотенузе:

Косинус острого угла в прямоугольном треугольнике — отношение прилежащего катета к гипотенузе:

Тангенс острого угла в прямоугольном треугольнике — отношение противолежащего катета к прилежащему:

Другое (равносильное) определение: тангенсом острого угла называется отношение синуса угла к его косинусу:

Котангенс острого угла в прямоугольном треугольнике — отношение прилежащего катета к противолежащему (или, что то же самое, отношение косинуса к синусу):

Обратите внимание на основные соотношения для синуса, косинуса, тангенса и котангенса, которые приведены ниже. Они пригодятся нам при решении задач.

Давайте докажем некоторые из них.

  1. Сумма углов любого треугольника равна . Значит, сумма двух острых углов прямоугольного треугольника равнa .
  2. С одной стороны, как отношение противолежащего катета к гипотенузе. С другой стороны, , поскольку для угла катет а будет прилежащим.Получаем, что . Иными словами, .
  3. Возьмем теорему Пифагора: .Поделим обе части на : Мы получили основное тригонометрическое тождество.
  4. Поделив обе части основного тригонометрического тождества на , получим: Это значит, что если нам дан тангенс острого угла , то мы сразу можем найти его косинус.Аналогично,

Хорошо, мы дали определения и записали формулы. А для чего все-таки нужны синус, косинус, тангенс и котангенс?

Мы знаем, что сумма углов любого треугольника равна .

Знаем соотношение между сторонами прямоугольного треугольника. Это теорема Пифагора: .

Получается, что зная два угла в треугольнике, можно найти третий. Зная две стороны в прямоугольном треугольнике, можно найти третью. Значит, для углов — свое соотношение, для сторон — свое. А что делать, если в прямоугольном треугольнике известен один угол (кроме прямого) и одна сторона, а найти надо другие стороны?

С этим и столкнулись люди в прошлом, составляя карты местности и звездного неба. Ведь не всегда можно непосредственно измерить все стороны треугольника.

Синус, косинус и тангенс — их еще называют тригонометрическими функциями угла — дают соотношения между сторонами и углами треугольника. Зная угол, можно найти все его тригонометрические функции по специальным таблицам. А зная синусы, косинусы и тангенсы углов треугольника и одну из его сторон, можно найти остальные.

Мы тоже нарисуем таблицу значений синуса, косинуса, тангенса и котангенса для «хороших» углов от до .

Обратите внимание на два красных прочерка в таблице. При соответствующих значениях углов тангенс и котангенс не существуют.

Ты нашел то, что искал? Поделись с друзьями!

Разберем несколько задач по тригонометрии из Банка заданий ФИПИ.

1. В треугольнике угол равен , . Найдите .

Задача решается за четыре секунды.

2 . В треугольнике угол равен , , . Найдите .

Найдем по теореме Пифагора.

Часто в задачах встречаются треугольники с углами и или с углами и . Основные соотношения для них запоминайте наизусть!

Для треугольника с углами и катет, лежащий напротив угла в , равен половине гипотенузы.

Треугольник с углами и — равнобедренный. В нем гипотенуза в раз больше катета.

Мы рассмотрели задачи на решение прямоугольных треугольников — то есть на нахождение неизвестных сторон или углов. Но это не всё! В вариантах ЕГЭ по математике множество задач, где фигурирует синус, косинус, тангенс или котангенс внешнего угла треугольника. Об этом — в следующей статье.

ege-study.ru

Тригонометрия

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно «не очень. »
И для тех, кто «очень даже. » )

Эта тема доставляет массу проблем ученикам. Считается одной из самых суровых. Что такое синус и косинус? Что такое тангенс и котангенс? Что такое числовая окружность? Стоит задать эти безобидные вопросы, как человек бледнеет и пытается увести разговор в сторону… А зря. Это простые понятия. И ничем эта тема не сложнее других. Просто нужно с самого начала чётко уяснить ответы на эти самые вопросы. Это очень важно. Если уяснили – тригонометрия вам понравится. Итак,

Что такое синус и косинус? Что такое тангенс и котангенс?

Начнём с глубокой древности. Не волнуйтесь, все 20 веков тригонометрии мы пройдём минут за 15. И, незаметно для себя, повторим кусочек геометрии из 8 класса.

Нарисуем прямоугольный треугольник со сторонами а, в, с и углом х. Вот такой.

Напомню, что стороны, которые образуют прямой угол, называются катетами. а и в – катеты. Их два. Оставшаяся сторона называется гипотенузой. с – гипотенуза.

Треугольник и треугольник, подумаешь! Что с ним делать? А вот древние люди знали, что делать! Повторим их действия. Измерим сторону в. На рисунке специально клеточки нарисованы, как в заданиях ЕГЭ бывает. Сторона в равна четырём клеточкам. Ладно. Измерим сторону а. Три клеточки.

А теперь поделим длину стороны а на длину стороны в. Или, как ещё говорят, возьмём отношение а к в. а/в = 3/4.

Можно наоборот, поделить в на а. Получим 4/3. Можно в поделить на с. Гипотенузу с по клеточкам не посчитать, но она равна 5. Получим в/с = 4/5. Короче, можно делить длины сторон друг на друга и получать какие-то числа.

Ну и что? Какой смысл в этом интересном занятии? Пока никакого. Бестолковое занятие, прямо скажем.)

А теперь сделаем вот что. Увеличим треугольник. Продлим стороны в и с, но так, чтобы треугольник остался прямоугольным. Угол х, естественно, не меняется. Чтобы это увидеть, наведите курсор мышки на картинку, или коснитесь её (если у вас — планшет). Стороны а, в и с превратятся в m, n, k, и, понятное дело, длины сторон изменятся.

А вот их отношения – нет!

Отношение а/в было: а/в = 3/4, стало m/n = 6/8 = 3/4. Отношения других соответствующих сторон также не изменятся. Можно как угодно менять длины сторон в прямоугольном треугольнике, увеличивать, уменьшать, не меняя угла хотношения соответствующих сторон не изменятся. Можно проверить, а можно поверить древним людям на слово.

А вот это уже очень важно! Отношения сторон в прямоугольном треугольнике никак не зависят от длин сторон (при одном и том же угле). Это настолько важно, что отношения сторон заслужили свои специальные названия. Свои имена, так сказать.) Знакомьтесь.

Что такое синус угла х? Это отношение противолежащего катета к гипотенузе:

Что такое косинус угла х? Это отношение прилежащего катета к гипотенузе:

Что такое тангенс угла х? Это отношение противолежащего катета к прилежащему:

Что такое котангенс угла х? Это отношение прилежащего катета к противолежащему:

Всё очень просто. Синус, косинус, тангенс и котангенс – это некоторые числа. Безразмерные. Просто числа. Для каждого угла – свои.

Зачем я так занудно всё повторяю? Затем, что это надо запомнить. Железно запомнить. Запоминание можно облегчить. Фраза «Начнём издалека…» знакома? Вот и начинайте издалека.

Синус угла – это отношение дальнего от угла катета к гипотенузе. Косинус – отношение ближнего к гипотенузе.

Тангенс угла – это отношение дальнего от угла катета к ближнему. Котангенс – наоборот.

Уже проще, правда?

Ну а если запомнить, что в тангенсе и котангенсе сидят только катеты, а в синусе и косинусе гипотенуза появляется, то всё станет совсем просто.

Можно ещё посчитать отношения гипотенузы к катетам. Эти отношения называются секанс и косеканс. Но они в школьном курсе не рассматриваются. И мы не будем. На радость ученикам.)

Всю эту славную семейку – синус, косинус, тангенс и котангенс называют ещё тригонометрическими функциями.

А теперь вопрос на соображение.

Почему мы говорим синус, косинус, тангенс и котангенс угла? Речь-то идёт об отношениях сторон, вроде. При чём здесь угол?

Смотрим на вторую картинку. Точно такую же, как и первая.

Наведите мышку на картинку. Я изменил угол х. Увеличил его с х до Х. Все отношения поменялись! Отношение а/в было 3/4, а соответствующее отношение t/в стало 6/4.

И все остальные отношения стали другими!

Стало быть, отношения сторон никак не зависят от их длин (при одном угле х), но резко зависят от этого самого угла! И только от него. Поэтому термины синус, косинус, тангенс и котангенс относятся к углу. Угол здесь — главный.

Надо железно уяснить, что угол неразрывно связан со своими тригонометрическими функциями. У каждого угла есть свой синус и косинус. И почти у каждого — свой тангенс и котангенс. Это важно. Считается, что если нам дан угол, то его синус, косинус, тангенс и котангенс нам известны! И наоборот. Дан синус, или любая другая тригонометрическая функция – значит, мы знаем угол.

Существуют специальные таблицы, где для каждого угла расписаны его тригонометрические функции. Таблицы Брадиса называются. Они очень давно составлены. Когда ещё не было ни калькуляторов, ни компьютеров.

Конечно, тригонометрические функции всех углов запомнить нельзя. Вы обязаны знать их только для нескольких углов, об этом дальше будет. Но заклинание «знаю угол – значит, знаю его тригонометрические функции» — работает всегда!

Вот мы и повторили кусочек геометрии из 8-го класса. Оно нам надо для ЕГЭ? Надо. Вот вам типичная задачка из ЕГЭ. Для решения которой достаточно 8-го класса. Дана картинка:

Всё. Больше никаких данных нет. Надо найти длину катета ВС.

Клеточки слабо помогают, треугольник как-то неправильно расположен. Специально, поди… Из информации есть длина гипотенузы. 8 клеток. Ещё зачем-то дан угол.

Вот здесь надо сразу вспоминать про тригонометрию. Есть угол, значит, мы знаем все его тригонометрические функции. Какую функцию из четырёх в дело пустить? А посмотрим-ка, что нам известно? Нам известны гипотенуза, угол, а найти надо прилежащий к этому углу катет! Ясно дело, косинус нужно в дело запускать! Вот и запускаем. Просто пишем, по определению косинуса (отношение прилежащего катета к гипотенузе):

Угол С у нас 60 градусов, его косинус равен 1/2. Это знать надо, безо всяких таблиц! Стало быть:

Элементарное линейное уравнение. Неизвестное – ВС. Кто подзабыл, как решать уравнения, прогуляйтесь по ссылке, остальные решают:

Это и есть верный ответ.

Можно считать, что один первичный балл за задание «В» — в кармане! Но одного балла мало, правда?) Имеет смысл продолжить воспоминания о геометрии 8-го класса.

Когда древние люди поняли, что у каждого угла имеется свой комплект тригонометрических функций, у них возник резонный вопрос. А не связаны ли как-нибудь синус, косинус, тангенс и котангенс между собой? Так, чтобы зная одну функцию угла, можно было найти остальные? Не вычисляя сам угол?

Вот такие они были неугомонные. )

Связь между тригонометрическими функциями одного угла.

Конечно, синус, косинус, тангенс и котангенс одного и того же угла связаны между собой. Всякая связь между выражениями задаётся в математике формулами. В тригонометрии формул — колоссальное количество. Но здесь мы рассмотрим самые основные. Эти формулы так и называются: основные тригонометрические тождества. Вот они:

Эти формулы надо знать железно. Без них вообще в тригонометрии делать нечего. Из этих основных тождеств вытекают ещё три вспомогательных тождества:

Сразу предупреждаю, что три последние формулы быстро выпадают из памяти. Почему-то.) Можно, конечно, вывести эти формулы из первых трёх. Но, в трудную минуту. Сами понимаете.)

В стандартных заданиях, типа тех, что приведены ниже, есть способ обойтись без этих незапоминающихся формул. И резко уменьшить ошибки по забывчивости, да и в вычислениях тоже. Этот практический приём — в Разделе 555, урок «Связь между тригонометрическими функциями одного угла.»

В каких заданиях и как используются основные тригонометрические тождества? Самое популярное задание — найти какую-нибудь функцию угла, если дана другая. В ЕГЭ такое задание из года в год присутствует.) Например:

Найти значение sinx, если х — острый угол, а cosx=0,8.

Задачка почти элементарная. Ищем формулу, где имеются синус и косинус. Вот она эта формула:

sin 2 x + cos 2 x = 1

Подставляем сюда известную величину, а именно, 0,8 вместо косинуса:

sin 2 x + 0,8 2 = 1

Ну и считаем, как обычно:

sin 2 x + 0,64 = 1

sin 2 x = 1 — 0,64

Вот, практически и всё. Мы вычислили квадрат синуса, осталось извлечь квадратный корень и ответ готов! Корень из 0,36 будет 0,6.

Задачка почти элементарная. Но словечко «почти» здесь не зря стоит. Дело в том, что ответ sinx= — 0,6 тоже подходит. (-0,6) 2 тоже 0,36 будет.

Два разных ответа получаются. А нужен один. Второй — неправильный. Как быть!? Да как обычно.) Внимательно прочитать задание. Там зачем-то написано: . если х — острый угол. А в заданиях каждое слово смысл имеет, да. Эта фраза — и есть дополнительная информация к решению.

Острый угол — это угол меньше 90°. А у таких углов все тригонометрические функции — и синус, и косинус, и тангенс с котангенсом — положительные. Т.е. отрицательный ответ мы здесь просто отбрасываем. Имеем право.

Собственно, восьмиклассникам такие тонкости не нужны. Они работают только с прямоугольными треугольниками, где углы могут быть только острые. И не знают, счастливые, что бывают и отрицательные углы, и углы в 1000°. И у всех этих кошмарных углов есть свои тригонометрические функции и с плюсом, и с минусом.

А вот старшеклассникам без учёта знака — никак. Многие знания умножают печали, да. ) И для правильного решения в задании обязательно присутствует дополнительная информация (если она необходима). Например, она может быть дана такой записью:

Или как-нибудь иначе. В примерах ниже увидите.) Для решения таких примеров нужно знать, в какую четверть попадает заданный угол х и какой знак имеет нужная тригонометрическая функция в этой четверти.

Итак, отметим самое главное:

1. Запомните определения синуса, косинуса, тангенса и котангенса. Очень пригодится.

2. Чётко усваиваем: синус, косинус, тангенс и котангенс накрепко связаны с углами. Знаем одно — значит, знаем и другое.

3. Чётко усваиваем: синус, косинус, тангенс и котангенс одного угла связаны между собой основными тригонометрическими тождествами. Знаем одну функцию — значит, можем (при наличии необходимой дополнительной информации) вычислить все остальные.

А теперь порешаем, как водится. Сначала задания в объёме 8-го класса. Но и старшеклассникам тоже можно. )

1. Вычислить значение tgА, если ctgА = 0,4.

2. β — угол в прямоугольном треугольнике. Найти значение tgβ, если sinβ = 12/13.

3. Определить синус острого угла х, если tgх = 4/3.

4. Найти значение выражения:

6sin 2 5° — 3 + 6cos 2 5°

5. Найти значение выражения:

(1-cosx)(1+cosx), если sinх = 0,3

Ответы (через точку с запятой, в беспорядке):

Получилось? Отлично! Восьмиклассники могут уже пройти за своими пятёрками.)

Не всё получилось? Задания 2 и 3 как-то не очень. Не беда! Есть один красивый приём для подобных заданий. Всё решается, практически, вообще без формул! Ну и, следовательно, без ошибок. Этот приём в уроке: «Связь между тригонометрическими функциями одного угла» в Разделе 555 описан. Там же разобраны и все остальные задания.

Это были задачки типа ЕГЭ, но в урезанном варианте. ЕГЭ — лайт). А сейчас почти такие же задания, но в полноценном егэшном виде. Для обременённых знаниями старшеклассников.)

6. Найти значение tgβ, если sinβ = 12/13, а

7. Определить sinх, если tgх = 4/3, а х принадлежит интервалу (- 540°; — 450°).

8. Найти значение выражения sinβ·cosβ, если ctgβ = 1.

Ответы (в беспорядке):

Здесь в задаче 6 угол задан как-то не очень однозначно. А в задаче 8 и вовсе не задан! Это специально). Дополнительная информация не только из задания берётся, но и из головы.) Зато уж если решили — одно верное задание гарантировано!

А если не решили? Гм. Ну, тут Раздел 555 поможет. Там решения всех этих заданий подробно расписаны, трудно не разобраться.

В этом уроке дано очень ограниченное понятие тригонометрических функций. В пределах 8-го класса. А у старших остаются вопросы.

Например, если угол х (смотрите вторую картинку на этой странице) — сделать тупым!? Треугольник-то вообще развалится! И как быть? Ни катета не будет, ни гипотенузы. Пропал синус.

Если бы древние люди не нашли выход из этого положения, не было бы у нас сейчас ни мобильников, ни TV, ни электричества. Да-да! Теоретическая основа всех этих вещей без тригонометрических функций — ноль без палочки. Но древние люди не подвели. Как они выкрутились — в следующем уроке.

Если Вам нравится этот сайт.

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Вот здесь можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся — с интересом!)

А вот здесь можно познакомиться с функциями и производными.

www.egesdam.ru

Синус, косинус, тангенс угла 45 градусов (sin 45, cos 45, tg 45)

Табличные значения синуса 45, косинуса 45 и тангенса 45 градусов указаны ниже. Далее по тексту следует пояснение метода и правильности вычисления этих значений для произвольного прямоугольного треугольника.

ЗНАЧЕНИЯ ТРИГОНОМЕТРИЧЕСКИХ ФУНКЦИЙ ПРИ α=45°

Построим и рассмотрим прямоугольный треугольник АВС у которого угол В = 45°. На основании соотношения его сторон, вычислим значения тригонометрических функций в прямоугольном треугольнике для угла 45 градусов. Поскольку треугольник прямоугольный, то значения функций синуса, косинуса и тангенса будут равны соотношению его соответствующих сторон.

Поскольку значение функций синуса, косинуса и тангенса зависят исключительно от градусной меры угла (или значения, выраженного в радианах), то найденные нами соотношения и будут значениями функции синуса 45, косинуса 45 и тангенса 45 градусов.

ЗНАЧЕННЯ ТРИГОНОМЕТРИЧНИХ ФУНКЦІЙ ПРИ α=45°

Створимо i розглянемо прямокутний трикутник АВС в якого кут В = 45°. На підставі співвідношення його сторін, обчислимо значення тригонометричних функцій в прямокутному трикутнику для кута 45 градусів. Оскільки трикутник прямокутний, то значення функцій синуса, косинуса і тангенса дорівнюватимуть співвідношенню його вiдповiдних сторін.

Оскільки значення функцій синуса, косинуса і тангенса залежать виключно від градусної міри кута (або значення, вираженого в радіанах), то знайдені нами співвідношення і будуть значеннями функції синуса 45, косинуса 45 і тангенса 45 градусів.

Согласно свойствам прямоугольного треугольника, угол С — прямой и равен 90 градусам. Угол B мы изначально построили с градусной мерой 45 градусов. Найдем значение угла А. Так как сумма углов треугольника равна 180 градусам, то

А + В + С = 180°
Угол C прямой и равен 90 градусам, угол B мы изначально определили как 45 градусов, таким образом:
А = 180° —С — В = 180° — 90° — 45° = 45°

Поскольку у данного треугольника два угла равны между собой, то треугольник АВС – прямоугольный, и, одновременно, равнобедренный, в котором оба катета равны между собой: AC = BC.

Допустим, что длина сторон равна некому числу АС = ВС = а. Зная длины катетов, вычислим длину гипотенузы.

По теореме Пифагора: АВ 2 =АС 2 +ВС 2
Заменим длины AC и BC на переменную а, тогда получим:

АВ 2 = а 2 + а 2 = 2а 2 ,

В результате мы выразили длины всех сторон прямоугольного треугольника с углом 45 градусов через переменную а.

Согласно свойств тригонометрических функций в прямоугольном треугольнике соотношение соответствующих сторон треугольника будет равным значению соответствующих функций. Таким образом для угла α = 45 градусов:

sin α = BC / AB (согласно определению синуса для прямоугольного треугольника — это отношение противолежащего катета к гипотенузе, BC — катет, AB — гипотенуза)

cos α = AC / AB (согласно определению косинуса — это отношение прилежащего катета к гипотенузе, AC — катет, AB — гипотенуза)

tg α = BC / AC (аналогично, тангенс для угла α будет равен отношению противолежащего катета к прилежащему)

Вместо обозначений сторон подставим значения их длин через переменную а.

Исходя из этого (см. таблицу значений sin 45, cos 45, tg 45) получаем:

Згідно властивостям прямокутного трикутника, кут С — прямій і дорівнює 90 градусам. Кут B ми спочатку побудували з градусною мірою 45 градусів. Знайдемо значення кута А. Так як сума кутів трикутника дорівнює 180 градусам, то

А + В + С = 180°
Кут C прямiй та дорівнює 90 градусам, кут B ми спочатку визначили як 45 градусів, таким чином:
А = 180° —С — В = 180° — 90° — 45° = 45°,

Оскільки в даного трикутника два кути рівні між собою, то трикутник АВС – прямокутний, і, одночасно, рівнобедрений, в якому обидва катети рівні між собою: AC = BC.

Допустимо, що довжина сторін дорiвнює деякому числу АС = ВС = а. Знаючи довжини катетів, обчислимо довжину гіпотенузи.

Згідно теореми Піфагора: АВ 2 =АС 2 +ВС 2
Замінимо довжини AC і BC на змінну а, тоді отримаємо:

АВ 2 = а 2 + а 2 = 2а 2 ,

В результаті ми виразили довжини всіх сторін прямокутного трикутника з кутом 45 градусів через змінну а.

Згідно властивостей тригонометричних функцій в прямокутному трикутнику співвідношення відповідних сторін трикутника буде рівним значенню відповідних функцій. Таким чином для кута α = 45 градусів:

sin α = BC / AB (згідно з визначенням синуса для прямокутного трикутника — це відношення катета, що протилежить куту, до гіпотенузи, BC — катет, AB — гіпотенуза)

cos α = AC / AB (згідно з визначенням косинуса — це відношення прилеглого катета до гіпотенузи, AC — катет, AB — гіпотенуза)

tg α = BC / AC (аналогічно, тангенс для кута α дорівнюватиме відношенню катета, що протилежить, до прилеглого)

Замість позначень сторін підставимо значення їх довжин через змінну а.

Виходячи з цього (див. таблицю значень sin 45, cos 45, tg 45) отримуємо:

Табличные значения sin 45, cos 45, tg 45 (то есть значение синуса 45, косинуса 45 и тангенса 45 градусов можно вычислить как соотношение соответствующих сторон данного треугольника), подставим вычисленные выше значения длин сторон в формулы и получим результат на картинке ниже.

profmeter.com.ua

Что такое синус, косинус, тангенс и котангенс в прямоугольном треугольнике?

Синус, косинус и тангенс острого угла прямоугольного треугольника.

Приветствую Вас дорогие учащиеся.

Сейчас рассмотрим что же такое синус, косинус, тангенс и котангенс в прямоугольном треугольнике?

Это тема не сложная, главное это запомнить правила. И так начнем:

Вспомним, что такое прямоугольный треугольник?

Прямоугольным треугольником, называется треугольник у которого один из углов прямой (составляет 90 градусов). Две стороны которые прилежат к прямому углу, называются катетами, а сторона лежащая напротив прямого угла, называется гипотенузой.

Синус (sin(a)) — это отношение противолежащего катета к гипотенузе;

Косинус (cos(a)) — это отношение прилежащего катета к гипотенузе;

Тангенс (tg(a)) — это отношение противолежащего катета к прилежащему катету;
Другое (равносильное) определение: тангенсом острого угла называется отношение синуса угла к его косинусу;

Котангенс (ctg(a)) — это отношение прилежащего катета к противолежащему.
Другое (равносильное) определение: котангенсом острого угла называется отношение косинуса угла к его синусу;

Пусть дан прямоугольный треугольник ABC с прямым углом C.

Найти sin(a); cos(a); tg(a); ctg(a) Отношение сторон в прямоугольном треугольнике

Аналогично рассуждаем относительно угла B.

Найти sin(b); cos(b); tg(b); ctg(b) Отношение сторон в прямоугольном треугольнике

Пример:

Найти тангенс угла С (tg(C)) треугольника ABC.

Хочешь готовиться к экзаменам бесплатно? Репетитор онлайн бесплатно. Без шуток. ЗДЕСЬ

tutomath.ru

Смотрите так же:

  • Правила нужные для сдачи огэ Шпаргалки по математике для ЕГЭ и ОГЭ Формулы, правила, свойства. Можно использовать для сдачи ЕГЭ и ОГЭ по математике. Для начала шпаргалка в компактном виде: Формулы сокращенного умножения (а+b) 2 = a 2 + 2ab + b 2 (а-b) 2 = a 2 – […]
  • Акт разрешения на проведение занятий в спортивном зале в школе Материально-техническое обеспечение и оснащенность образовательного процесса Информация о наличии оборудованных учебных кабинетах, объектах для проведения практических занятий, библиотеках, объектах спорта, средствах обучения и […]
  • Объявление ликвидация ооо Публикация о ликвидации в «Вестнике государственной регистрации» Журнал «Вестник государственной регистрации» — СМИ для официальных сообщений налоговой службы и юридических лиц. Согласно приказу ФНС России от 16.06.2006 N САЭ-3-09/[email protected] […]
  • Закон о шипованной резине с 1 января 2018 принят Новые требования к автомобильным шинам Казалось бы, прошло чуть больше года со времени жарких споров об обязательном применении сезонной резины на автомобилях и штрафах за езду на летней резине зимой. Теперь многие водители ищут […]
  • Повторно езда без прав штраф За повторное вождение без права управления транспортным средством могут установить ответственность Ответственность за управление транспортным средством водителем, не имеющим права управления транспортным средством, хотят ужесточить. […]
  • Сколько пенсия при второй группе инвалидности Разбираемся, каким должен быть размер минимальной пенсии инвалида 2 группы Сейчас государство разными способами производит помощь социально незащищенным слоям населения. Отдельную заботу проявляют по отношению к инвалидам. В этой статье […]

Обсуждение закрыто.