Первый закон тер

Техническая механика

Основные понятия и аксиомы динамики

Динамика есть часть теоретической механики, изучающая механическое движение тел в зависимости от сил, влияющих на это движение.

Основы динамики заложил итальянский ученый Галилео Галилей (1564-1642) , который опроверг существовавшее в науке со времен Аристотеля (IV в. до н.э.) заблуждение о том, что из двух тел, падающих на Землю, более тяжелое движется быстрее. Галилей установил, что причиной изменения скорости тела является сила, т. е. любое ускорение или замедление вызывается силовым воздействием.
На основе выводов Г. Галилея англичанин И. Ньютон сформулировал основные аксиомы (законы) движения, ставшие фундаментом, на который сотни лет опирается классическая физика, в том числе и современная.

Динамика основывается на ряде положений, которые являются аксиомами и называются законами динамики.
Прежде чем перейти к рассмотрению этих законов, необходимо раскрыть сущность понятий материальной точки и изолированной материальной точки.
Под материальной точкой подразумевают некое тело, имеющее определенную массу (т. е. содержащее некоторое количество материи), но не имеющее линейных размеров (бесконечно малый объем пространства).
Изолированной считается материальная точка, на которую не оказывают действие другие материальные точки.
В реальном мире изолированных материальных точек, как и изолированных тел, не существует, это понятие является условным.

Первый закон Ньютона (первый закон динамики)

Первый закон динамики, называемый аксиомой инерции, формулируется в применении к материальной точке так: изолированная материальная точка либо находится в покое, либо движется прямолинейно и равномерно .

В кинематике было установлено, что прямолинейное равномерное движение является единственным видом движения, при котором ускорение равно нулю, поэтому аксиому инерции можно сформулировать следующим образом: ускорение изолированной материальной точки равно нулю.

Итак, изолированная от влияния окружающих тел материальная точка не может сама себе сообщить ускорение. Это свойство тел называют инерцией или инертностью , т. е. инертность (инерция) – свойство тел сохранять скорость по модулю и направлению (в т. ч. и покой – состояние, при котором скорость равна нулю). Изменить скорость, т. е. сообщить материальной точке ускорение способна только приложенная к ней сила.

Второй закон Ньютона (второй закон динамики)

Зависимость между силой и сообщаемым ею ускорением устанавливает второй закон Ньютона, который гласит, что ускорение, сообщаемое материальной точке силой, имеет направление силы и пропорционально ее модулю .

Если сила F1 сообщает материальной точке ускорение a1 , а сила F2 сообщает этой же точке ускорение a2 , то на основании второго закона Ньютона можно записать:

Следовательно, для данной материальной точки отношение любой силы к вызываемому ею ускорению есть величина постоянная. Эту величину (отношение силы к ускорению) называют массой материальной точки, и обозначают ее m :

На основании этого равенства можно сделать выводы:
— две материальные точки, имеющие одинаковые массы, получат от одной и той же силы одинаковые ускорения;
— чем больше масса точки, тем большую силу необходимо приложить, чтобы придать данной точке требуемое ускорение .

Что такое масса тела

Масса – одна из основных характеристик любого материального объекта, определяющая его инертные и гравитационные свойства. Ньютон называл массой количество материи, заключенной в теле, считая массу каждого тела величиной постоянной.
Современное представление о мире, после открытий, совершенных А. Эйнштейном, опровергает этот вывод И. Ньютона – масса не является постоянной величиной для тела, она зависит от скорости, с которой это тело движется. Так, например, наблюдения за движением заряженных частиц в ускорителях показали, что инертность частицы (т. е. способность сохранять свою скорость) возрастает с увеличением ее скорости.

Теория относительности устанавливает следующую зависимость между массой тела, находящегося в покое, и массой движущегося тела:

где m – масса движущегося тела, m0 – масса покоящегося тела (масса покоя), v = скорость движения тела, c – скорость света.

Из этой формулы видно, что чем больше скорость движения тела, тем больше его масса и, следовательно, тем труднее сообщить ему дальнейшее ускорение. При скоростях близких к скорости света масса тела стремится к бесконечности, и для дальнейшего ускорения такого тела требуется сила бесконечной величины.
Очевидно, что материальное тело не может двигаться со скоростью света, поскольку не существует реальная сила, способная ускорить его до такого состояния.

На основании теории относительности современная наука дает массе такое определение: масса есть мера инертности тела .
Однако заметное изменение массы (инертности) тела наблюдается лишь при очень больших скоростях, близких к скорости света, поэтому в классической физике массу принимают величиной постоянной, при этом погрешности, возникающие в расчетах, являются ничтожно малыми.

Второй закон Ньютона выражается равенством:

которое называется основным уравнением динамики и читается так: сила есть вектор, равный произведению массы точки на ее ускорение .
Основное уравнение динамики является уравнением движения материальной точки в векторной форме.

Ускорение свободного падения

Опытным путем установлено, что под действием притяжения Земли в вакууме тела падают с одинаковым ускорением, которое называется ускорением свободного падения.

Следует отметить, что это явление будет верным для конкретного географического места на поверхности планеты или над ее поверхностью – ускорение свободного падения не является постоянной величиной и зависит, в частности, от расстояния между центром тяжести тела и центром тяжести нашей планеты, а также от существования центробежной силы инерции, вызываемой вращением Земли.
Так, на полюсах ускорение свободного падения g ≈ 9,83 м/с 2 , а на экваторе g ≈ 9,78 м/с 2 . Но в приближенных расчетах принимают среднее значение, равное примерно g ≈ 9,81 м/с 2 , при этом погрешности результатов незначительны.

Итак, сила тяжести тела равна его массе, умноженной на ускорение свободного падения. Если сила тяжести одного тела G1 = m1/g , а второго тела – G2 = m2/g , то

т. е. силы тяжести тел пропорциональны их массам, что позволяет сравнивать массы различных тел путем взвешивания (сравнивания их сил тяжести при помощи весов).

Из второго закона Ньютона следует, что под действием постоянной силы находившаяся в покое свободная материальная точка движется прямолинейно равнопеременно (с постоянным ускорением).

Движение под действием постоянной силы может быть и прямолинейным и криволинейным (в последнем случае материальная точка имеет начальную скорость, вектор которой не совпадает с вектором силы). Пример движения под действием постоянной силы – свободное падение тел.

Третий закон Ньютона

К основным законам динамики относится и рассмотренная в Статике аксиома взаимодействия, или третий закон Ньютона.
Применительно к материальной точке закон формулируется так: силы взаимодействия двух материальных точек по модулю равны между собой и направлены в противоположные стороны (действие равно противодействию).

На основании этого закона можно сделать вывод, что сила, как мера взаимодействия между телами, не может проявляться без пары, т. е. если возникает какое-либо силовое воздействие, то существует и «двойник» этого силового воздействия, равный по модулю и противоположный по вектору.

Правильные ответы на тестовые вопросы по разделу «Динамика»:
Тест №1 2-3-2-1-1
Тест №2 4-2-4-3-1
Тест №3 3-1-1-2-4
Тест №4 4-2-1-2-3
Тест №5 1-1-4-3-2
Тест №6 1-3-3-2-4
Тест №7 2-2-4-1-3

k-a-t.ru

Второй Закон Термодинамики

Другая формулировка: все самопроизвольные процессы в природе идут с увеличением энтропии. (Энтропия — мера хаотичности, неупорядоченности системы).

Рассмотрим систему из двух контактирующих тел с разными температурами. Тепло пойдет от тела с большей температурой к телу с меньшей, до тех пор, пока температуры обоих тел не выровняются. При этом от одного тела к другому будет передано определенное количество тепла dQ. Но энтропия при этом у первого тела уменьшится на меньшую величину, чем она увеличится у второго тела, которое принимает теплоту, так как, по-определению, dS=dQ/T (температура в знаменателе!). То есть, в результате этого самопроизвольного процесса энтропия системы из двух тел станет больше суммы энтропий этих тел до начала процесса. Иначе говоря, самопроизвольный процесс передачи тепла от тела с высокой Т к телу с более низкой Т привел к тому, что энтропия системы из этих двух тел увеличилась!

Заметим, что, рассматривая эту систему из двух тел, мы подразумевали, что внешнего теплопритока в нее или теплооттока из нее нет (для простоты, чтобы не пудрить себе мозги) — то есть, считали ее изолированной (или замкнутой). Отсюда еще одна формулировка Второго Закона Термодинамики: «При прохождении в изолированной системе самопроизвольных процессов энтропия системы возрастает». Или: «Энтропия изолированной системы стремится к максимуму» — так как самопроизвольные процессы передачи тепла всегда будут происходить, пока есть перепады температур.

А что будет, если наша система из двух тел будет неизолирована (незамкнута) и, допустим, в нее поступает тепло? Ясно, что ее энтропия будет увеличиваться еще больше, так как при получении телом тепла энтропия его увеличивается (dS=dQ/T).

Но для простоты формулировки этот момент обычно не упоминают и поэтому формулируют Второй Закон термодинамики именно для изолированных систем. Хотя, как мы видим, он действует точно также и для открытых систем в случае поступления в них тепла.

И представьте, эти идиоты эволюционисты уперлись в общепринятую формулировку Второго Закона термодинамики для изолированных систем, утверждая, что, мол, если система открыта, то Второй Закон Термодинамики не действует! Это какими же тупыми и безмозглыми надо быть, что даже мозгами чуть-чуть лень пошевелить, чтобы понять такую простую истину, что для открытой системы с подведением тепла энтропия растет даже быстрее, чем для изолированной!

www.aha.ru

Первый закон термодинамики, внутренняя энергия, тепло, работа, энтальпия, энтропия.

1-й закон термодинамики, внутренняя энергия, тепло, работа, энтальпия, энтропия.

Первый закон термодинамики гласит, (4 разные формулировки) что :

  • Энергия не может быть создана или уничтожена (закон сохранения энергии), она лишь переходит из одного вида в другой в различных физических процессах. Отсюда следует, что внутренняя энергия изолированной системы остается неизменной.
  • Количество теплоты, полученное системой, идет на изменение ее внутренней энергии и совершение работы против внешних сил.
  • Изменение внутренней энергии системы при переходе ее из одного состояния в другое равно сумме работы внешних сил и количества теплоты, переданной системе и не зависит от способа, которым осуществляется этот переход.
  • Изменение внутренней энергии неизолированной термодинамической системы равно разности между количеством теплоты, переданной системе, и работой, совершенной системой над внешними силами.

Первый закон термодинами гласит, что энергия не может быть создана или уничтожена. Таким образом, энергия системы (замкнутой) — постоянна. Тем не менее, энергия может быть передана от одного элемента системы другому. Рассмотрим замкнутую систему, изолированную от остальных.

Передача энергии между различными подсистемами в ней может быть описана как :

E1 = начальная энергия

E2 = конечная энергия

Внутрення энергия включает :

  • Кинетическую энергию движения атомов
  • Потенциальную энергию хранящуюся в химических связях
  • Гравитационную энергию системы

Первый закон является основой для термодинамической науки и инженерного анализа.

Базируется на возможных типах обмена (энергии), ниже приведены 3 типа систем:

  • пред — изолированные системы (isolated systems): отсутствует обмен элементами системы или энергией
  • закрытые системы (closed systems): отсутствует обмен элементами системы, но присутствует некоторый обмен энергией
  • открытые системы (open systems): возможен обмен как элементами системы, так и энергией

Первый закон термодинамики помогает использовать ключевые концепции внутренней энергии (internal energy), тепла (heat), и работы системы (system work). которые широко используются в описании тепловых систем (heat engines).

  • Внутренняя энергия ( Internal Energy) — Внутренняя энергия определяется как энергия случайных, находящихся в неупорядченном движении молекул. Энергия молекул находится в диапазоне от высокой, необходимой для движения, до заметной лишь с помощью микроскопа энергии на молекулярном или атомном уровне. Например, у стакана с водой комнатной температы, стоящего на столе нет, на первый взгляд, никакой энергии: ни кинетической, ни потенциальной относительно стола. Но, с помощью микроскопа становится заметна «бурлящая» масса быстро двигающихся молекул. Если выплеснуть воду из стакана, эта микроскопическая энергия не обязательно заметно изменится, когда мы усредним добавленную кинетическую энергию на все молекулы воды.
  • Тепло — Тепло может быть определено, как энергия, передаваемая от объекта с более высокой температурой к объекту с менее высокой температурой. Сам по себе объект не обладает «теплом»; соответствующий термин для микроскопической энергии объекта — внутренняя энергия. Внутренняя энергия может увеличиваться путем переноса энергии к объекту от объекта, имеющего температуру выше — этот процесс называется нагревом.
  • Работа — Когда работа совершается термодинамической системой (чаще всего это газ, который совершает работу), то работа совершенная газом при постоянном давлении определяется как : W = p dV, где W — работа, p — давление, а dV -изменение объема.
    В случаях когда давление не является постоянным, работа может быть представлена интегральным образом, как площадь поверхности под кривой в координатах давление, объем, которые представляют происходящий процесс.

Изменение внутренней энергии системы равно теплу (добавленному системе) минус работа, совершенная системой

dE = изменение внутренней энергии

Q = добавленное тепло

W =работа системы

1й закон не дает информации о характере процесса и не определяет конечного состояния равновесия. Интуитивно мы понимаем, что энергия переходит от объекта с более высокой температурой к объекту с менее высокой температурой. Таким образом, 2й закон нам нужен для получения информации о характере процесса.

Энтальпия

  • это «термодинамический потенциал » используемый в химической термодинамике реакций и не циклических процессов.
  • однозначная функция состояния термодинамической системы при независимых параметрах энтропии и давления, связана с внутренней энергией соотношением, приведенным ниже.
  • это свойство вещества, указывающее количество энергии, которую можно преобразовать в теплоту.

Энтальпия определяется как:

U = внутренняя энергия

V = объем системы

При постоянном давлении изменение энтальпии равно количеству теплоты, подведенной к системе, поэтому энтальпию часто называют тепловой функцией или теплосодержанием. В состоянии термодинамического равновесия энтальпия системы минимальна.

Энтальпия является точно измеряемым параметром, когда определены способы выражения трех других поддающихся точному определению параметров формулы выше.

Термин «энтропия» — величина, характеризующая степень неопределенности системы.

Однако, в термодинамике это понятие используется для определения связанной энергии системы. Энтропия определяет способность одной системы влиять на другую. Когда объекты пересекают нижнюю границу энергетического уровня необходимого для воздействия на окружающую среду, энтропия возрастает.Энтропия связана со вторым законом термодинамики.

Энтропия (обычно обозначается S), функция состояния термодинамической системы, изменение которой dS в равновесном процессе равно отношению количества теплоты dQ, сообщенного системе или отведенного от нее, к термодинамической температуре Т системы.

в символьном виде записывается, как

dS=(dQ)/T

dS — изменение термодинамической системы

dQ — количество теплоты, сообщенное системе

T — термодинамическая температура системы

Неравновесные процессы в изолированной системе сопровождаются ростом энтропии, они приближают систему к состоянию равновесия, в котором S максимальна (закон неубывания энтропии).

tehtab.ru

Справочник химика 21

Химия и химическая технология

Первый закон термодинамики. Закон Гесса

Согласно закону Гесса тепловой эффект реакции не зависит от промежуточных стадий, а определяется лишь начальным и конечным состоянием системы при условии, что давление или объем в течение всего процесса остаются неизменными. Математическая формулировка закона Гесса является непосредственным следствием первого начала термодинамики и выражается уравнениями [c.24]

Так как внутренняя энергия и энтальпия являются функциями состояния, то согласно уравнениям (62.2) и (62.3) тепловой эффект еакции не зависит от пути процесса (промежуточных стадий), а определяется только начальным и конечным состояниями системы. (т. е. состоянием исходных веществ и продуктов реакции). Это следствие первого закона термодинамики применительно к химическим процессам называется законом Гесса. Этот основной закон термохимии был установлен Гессом на базе экспериментальных исследований в 1840 г., т. е. несколько раньше, чем был сформулирован первый закон термодинамики. Комбинируя уравнения (62.2) и (62.3), получаем [c.206]

Согласно первому закону термодинамики теплота есть функция процесса. Закон Гесса утверждает, что тепловой эффект химической реакции не зависит от пути процесса. Дайте объяснение этому противоречию. [c.13]

Применим ли первый закон термодинамики и закон Гесса к биологическим системам [c.61]

Указанный закон независимости суммарной ,теплоты химической реакции от пути процесса был открыт в 1836 г., еще до установления первого закона термодинамики, русским ученым Г. И. Гессом и носит его имя. [c.57]

Принимая во внимание эту формулу, в соответствии с первым законом термодинамики (закон Гесса) [c.32]

Закон постоянства сумм теплот реакции, установленный в 1836—1840 гг. русским ученым Г. И. Гессом на основании анализа экспериментальных данных, может рассматриваться как следствие первого закона термодинамики при соблюдении первых двух указанных выше условий. [c.39]

К тому же периоду относится развитие термохимии, одним из основателей которой был Г. И. Гесс (1802—1850), профессор Горного института в Петербурге. В результате обширных экспериментальных исследований он в 1840 г. опубликовал основной закон термохимии (названный впоследствии его именем), который можно рассматривать как одно из выражений открытого позднее первого закона термодинамики применительно к химическим процессам. [c.15]

В установлении современной формы выражения первого закона термодинамики большую роль сыграли работы Г. И. Гесса (1840), Р. Майера (1842), Джоуля (1847), Гельмгольца (1847) и др. [c.187]

Выше было показано, что Qp=AH и Qv = M . Так как внутренняя энергия и и энтальпия Н — термодинамические функции, т. е. функции состояния, то их изменение не зависит от пути перехода системы из одного состояния в другое, а зависит только от начального и конечного состояний системы. Следовательно, и теплоты химических реакций АН и АУ не зависят от пути, по которому протекает реакция, а зависят только от начального и конечного состояний реагирующих веществ. Это утверждение, являющееся прямым следствием первого закона термодинамики, известно под названием закона Гесса. Из него вытекает следующее [c.12]

В 1840 г. русский академик Г. И. Гесс на основании большого числа выполненных им измерений теплот нейтрализации кислот аммиаком и щелочами нашел, что тепловой эффект реакции (Ql/ или Qp) не зависит от пути реакции, т. е. от ее промежуточных стадий, и определяется только природой и состоянием исходных веществ и продуктов реакции. Очевидно, что этот закон является прямым следствием первого закона термодинамики, так как при постоянных давлении и объеме теплота процесса определяется изменением функций состояния 1 и Н. Интересно, однако, отметить, что закон Гесса был открыт раньше, чем был ясно сформулирован и получил признание первый закон термодинамики. [c.21]

X. т. использует понятия о типах термодинамич. систем (см. Гетерогенная система. Гомогенная система. Закрытая система, Изолированная система, Открытая система), параметрах состояния (см. Давление, Температура, Химический потенциал), термодинамич. ф-циях и термодинамических потенциалах (см., напр., Внутренняя энергия. Энтропия). В основе Х.т. лежат законы (начала) общей термодинамики. Первое начало термодинамики — закон сохранения энергаи дая термодинамич. системы, согласно к-рому работа может совершаться только за счет теплоты или к.-л. др. формы энергии. Оно является основой термохимии, изучения теплоемкостей в-в, тепловых эффектов реакций и физ.-хим процессов. Гесса закон позволяет определять тепловые эффекты расчетным путем, если известны теплоты образования каждого из в-в, участвующих в р-ции, или теплоты сгорания (для орг. соед.). Совр. термодинамич. справочники содержат данные о теплотах образования или теплотах сгорания неск. тысяч в-в, гто позволяет рассчитывать тепловые эффекты десятков тысяч хим. р-ций. Первое начало лежит в основе Кирхгофа уравнения, к-рое выражает зависимость теплового эффекта р-ции или физ.-хим. процесса ст т-ры и дает возможность рассчитать тепловой эффект процесса при любой т-ре, если известны теплоемкости в-в, участвующих в р-ции, и тепловой эффект при к.-л. одной т-ре. [c.236]

Это значит, что тепловой эффект реакции зависит от исходного и конечного состояний системы и не зависит от ее промежуточных состояний. Такой вывод, являющийся следствием первого закона термодинамики, был сделан Гессом на основании анализа экспериментальных данных и получил название закон Гесса-. [c.71]

В 1780 г. Лавуазье и Лаплас установили, что количество теплоты, поглощаемое при разложении соединения, должно быть равно количеству теплоты, которое выделяется при образовании этого соединения в тех же условиях. Таким образом, при написании обратной реакции нужно изменить знак ДЯ. В 1840 г. Гесс показал, что суммарный тепловой эффект химической реакции при постоянном давлении не зависит от промежуточных стадий реакции. Оба принципа логически вытекают из первого закона термодинамики и являются следствием того факта, что энтальпия есть функция состояния. Это позволяет рассчитать изменения энтальпии для реакций, которые нельзя изучать непосредственно. Например, нецелесообразно измерять теплоту сгорания углерода до окиси углерода в ограниченном количестве кислорода, потому что продукт реакции всегда будет представлять смесь окиси и двуокиси углерода неопределенного состава. Однако теплоту полного сгорания углерода до двуокиси в избытке кислорода измерить можно. Так, для графита при 25° С [c.32]

Первый закон термодинамики представляет собой одну из форм закона сохранения энергии, установленного в современном виде Гессом (1840), Майером (1842), Джоулем (1842) и Гельмгольцем (1847). Существует несколько эквивалентных формулировок закона сохранения энергии. [c.28]

По одной из формулировок первого закона термодинамики в любом процессе приращение внутренней энергии Аи = и2—С/1 системы равно количеству сообщенной системе теплоты Q минус количество работы А, совершенной системой, т. е. AU = Q—А. Очень важно, что из трех величин, входящих в это соотношение, только одна — АО однозначно определяется начальным и конечным состояниями системы и не зависит от пути перехода. Это означает, что Р и Л зависят от способа совершения процесса. Поскольку теплота Q связана с изменением энтальпии соотношением Q = —АН, следовательно, ДЯ зависит от пути перехода и закон Гесса к АН не применим. Но это не так. Найдите ошибку в рассуждениях. [c.83]

Уравнение (1.17) было установлено экспериментально еще до открытия первого закона термодинамики, В 1840 г, Гесс на основании имевшихся в его распоряжении данных показал, что тепловом эффект химической реакции определяется только природой исходных и конечных продуктов, но не зависит от протекания промежуточных химических реакций, т, е, от способа перехода от одного состояния к другому. Сейчас ясно, что его формулировка не вполне точна и характер поправок ясен из уравнения (1.17). [c.32]

Изменение энтальпии как функции состояния при химических реакциях не зависит от пути реакции, т. е. от того, через какие стадии она совершается и какие при этом возникают промежуточные вещества. Величина ДЯ определяется только природой и состоянием исходных веществ и продуктов реакции. Это следствие из первого закона термодинамики было открыто опытным путем и носит название закона Гесса тепловой эффект химической реакции не зависит от характера промежуточных продуктов и равен сумме тепловых [c.14]

Применив первый закон термодинамики к химическим реакциям и заменив изменения внутренней энергии соответствующими теплотами сгорания, непосредственно приходим к закону Гесса, который гласит тепловой эффект химической реакции зависит только от начального и конечного состояния, но не зависит от пути, по которому протекала реакция. [c.23]

Первое и второе начала термодинамики. Закон Гесса. Закон Кирх-гоффа. Теплоемкости при постоянном объеме и при постоянном давлении Срь Зависимость теплоемкостей от температуры. Тепловые эффекты реакции при постоянном объеме и при постоянном давлении. Связь между ними. Теплота растворения. Теплота разбавления. Теплота диссоциации. Теплота нейтрализации. Нейтрализация сильных и слабых кислот и оснований. Устройство простейшего калориметра. Методика калориметрического опыта. Термометр Бекмана и обращение с ним. Вычисление водяного эквивалента (водяного числа) калориметра из теплоемкостей отдельных его частей. График хода температуры в предварительном, главном и заключительном периодах. опыта. Поправка на тепловой обмен с окружающей средой. [c.42]

Рассматривая деятельность Гесса, нельзя не придти к выводу, что наиболее важным для науки достижением было открытие им закона постоянства сумм тепла, в котором он настолько близко подошел к полной и строгой формулировке первого начала термодинамики, что участие его в этом творческом акте, вообще говоря принадлежащем не одному исследователю, а целой группе ученых, заслуживает особого обсуждения. В этом обсуждении следует тщательно взвесить как положительные, так и слабые стороны труда Гесса. [c.170]

Открытие первого начала термодинамики было подготовлено всем историческим ходом развития науки и явилось достоянием не отдельной личности, а нескольких исследователей. В середине прошлого века на протяжении приблизительно двух десятилетий ученые с различных позиций, теоретически и экспериментально, с разною степенью полноты и точности пришли к результатам, в совокупности составившим собою содержание первого начала термодинамики. Этими учеными, наряду с Гессом, были Юлий Роберт Майер, Джоуль, Гельмгольц. Один из первых, кто оценил значение законов, открытых Гессом, был Гельмгольц, которому принадлежало систематическое, строгое и математически обоснованное изложение принципа сохранения энергии. Изложив исследования Гесса, он писал, что гессов-ский закон представляется в данном случае выражением закона сохранения энергии [19]. Как же следует понимать это утверждение Гельмгольца Трудно судить, считал ли Гельмгольц обобщение Гесса частным случаем принципа сохранения энергии или же он действительно считал его выражением закона сохранения энергии , причем, первым по времени, так как работа Майера [21], о которой Гельмгольц, по его собственному признанию, вообще ничего не знал, появилась двумя годами позже за и против могут быть приведены одинаково веские соображения. Однако, в соответствии со сказанным нами ранее, мы считаем более вероятным, что Гельмгольц правильно понял значение трудов Гесса, по праву занимающих место в общей системе работ, заложивших основы принципа сохранения. [c.173]

Русский ученый Г. И. Гесс (1802—1850) профессор Горного института в Петербурге впервые сформулировал основной закон термохимии о постоянстве сумм тепла при химических реакциях. Этот закон, впоследствии названный его именем, следует рассматривать как одно из выражений открытого позднее первого закона термодинамики применительно к химическим реакциям. [c.8]

В 1840 г. русский академик Г. И. Гесс на основе обширных экспериментальных исследований тепловых эффектов химических реакций установил основной закон термохимии, который является одним из выражений открытого позднее первого закона термодинамики. Дальнейшее развитие термодинамика получила в работах многих ученых. Второй закон термодинамики был обоснован Р. Клаузиусом и В. Томсоном, третий закон термодинамики был открыт В. Нернстом. [c.7]

Первый закон термодинамики является, по существу, законом сохранения и превращения энергии в применении его к тепловым процессам. Он был развит и нашел отражение в работах русского академика Г. И. Гесса (1840 г.), а также в работах Р. Майера (1842 г.), Джоуля (1843 г.), Гельмгольца (1847 г.) и других. [c.28]

Этот частный случай первого закона термодинамики в применении к химическим реакциям обычно называется законом Гесса. [c.123]

ПЕРВЫЙ ЗАКОН ТЕРМОДИНАМИКИ. ЗАКОН ГЕССА В соответствии с перпым законом термодинамики [c.48]

В основе Т. X. лежат общие положения и выводы термодинамики. Первый закон тер.иодинамики слу-ишт основой термохимии, и основной закон термохимии — Гесса закон — является важнейшим его следствием. Предметом термохимии служит изучение теплоемкостей различных веществ и тепловых эффектов химич. реакций и различных физико-химнч. процессов. Закон Гесса дает возможность определять тепловые эффекты расчетным путем, не прибегая к дорогостоящим и не всегда доступным экспериментальным опродолоииям. При таких расчетах большую роль играют теплоты образования рассматриваемых веществ, т. к., зная теплоту образования каждого из веществ, участвующих в данной реакции, легко рассчитать ее тепловой эффект. Для органич. реакции подобную же роль играют и теплоты сгорания. Современные справочные издаппя содерн ат данные [c.48]

Из закона сохранения энергии вытекаег еще одна формулировка первого закона термодинамики —невозможность создания вечного двигателя (perpetuum mobile) первого рода, который производил бы работу, не затрачивая на это энергии. В раскрытии первого закона термодинамики как фундаментального закона природы сыграли большую роль работы Гесса (1840), Майера (1842), Джоуля (1847), Гельмгольца ( 847) и др. В частности, Джоуль обосновал первый закон термодинамики, исходя из опытов превращения механической энергии в теплоту. [c.191]

Из первого закона термодинамики — энергия не возникает из ничего и не исчезает, а только превращается из одной формы в другую в эквивалентных количествах — вытекает закон Гесса (1840), который в современной формулировке гласит, что изменение энтальпии (при р=пост.) зависит только от вида и состояния исходных веществ и продуктов рвакции и не зависит от пути перехода. [c.124]

В 1840 г. русский академик Г. И. Гесс на примере тепловых эффектов химических реакций сформулировал первый закон термодинамики. Затем термодинамика получила развитие в трудах немецкого физика Р. Клаузиуса, а также в работах наших отечественных ученых М. Ф. Окатова и А. Т. Столетова. [c.5]

Смотреть страницы где упоминается термин Первый закон термодинамики. Закон Гесса: [c.53] [c.56] [c.56] Смотреть главы в:

chem21.info

Первый закон тер

Динамикой называется та часть, в которой рассматриваются влияние сил на состояние движения материальных объектов.

В этом разделе в качестве моделей реальных тел принимается материальная точка

Законы Ньютона. Правило сложения сил.

Рассмотрим движение материальной точки (рис. 46) в инерциальной системе отсчёта под действием сил, обусловленных взаимодействием точек с другими точками и телами (т. е. возникающих в результате взаимодействия материальных объектов).

Заметим, что при движении в неинерциальной системе отсчёта относительные движения частично определяются движением самой системы отсчёта.

Уравнения движения составляются на основе законов Ньютона.

Трактат «Математические начала натуральной философии»:

1687 г. – год возникновения теоретической механики.

Законы Ньютона – идеализированные законы природы, но для практики это допустимо в очень широких пределах.

Введём меры движения.

Количество движения – равно произведению массы m на вектор скорости точки:

,

где m = const > 0 – мера инертности материи.

Момент количества движения, относительно начала координат (рис. 47):

.

Кинетическая энергия материальной точки:

(скаляр)

В дальнейшем покажем, что в ряде случаев движение точки наглядней описывается через или Т.

При формулировании законов Ньютона обозначаем:

— сила взаимодействия между точками и ;

— суммарная сила, приложенная к точке М , взаимодействующей со многими точками.

Первый закон Ньютона: материальная точка пребывает в состоянии покоя или равномерного прямолинейного движения относительно инерциальной системы отсчёта до тех пор, пока действующие на неё силы не изменят это состояние.

То есть изолированная точка либо покоится, либо движется прямолинейно и равномерно. Причина изменения движения – вне самой точки.

Второй закон Ньютона: производная по времени от количества движения материальной точки геометрически равна силе, приложенной к точке. Или, при постоянной массе, произведение массы точки на её абсолютное ускорение геометрически равно приложенной к материальной точке силе, т. е.

или , если m = const.

Связь кинематической величины – ускорения с динамической величиной – силой через коэффициент пропорциональности – массу.

Третий закон Ньютона: две любые материальные точки взаимодействуют друг с другом с силами, направленными по прямой, соединяющей эти точки, равными по величине и противоположно направленными (рис. 48).

Рассмотрим воздействие точки M1 c остальными точками (рис. 49).

Для имеем ускорение:

Принцип независимости действия сил: ускорение , вызываемое силой , определяется только этой силой и не зависит от других сил.

; обозначая

Геометрическая сумма ускорений , вызываемых силами взаимодействия точки М1 с остальными точками, пропорциональна геометрической сумме сил взаимодействия – правило параллелограмма для сложения сил.

От чего зависит сила ?

1) от координат точки в данный момент времени;

2) от предистории движения (старение);

3) от окружающей среды (температура);

4) сопротивление воздуха.

Идеализация: силы зависят только от координат точки, от первых производных и явно от времени:

На практике – допустимо.

Развитие физики привело к изменению некоторых устаревших представлений и к выяснению границ области, в пределах которой справедлива механика Ньютона: его понятие об абсолютном пространстве заменено теперь понятием инерциальной системы отсчёта; установлено, что механика Ньютона – классическая механика – неприменима, если относительные скорости точек сравнимы со скоростью света [это область релятивистской или эйнштейновской механики]; неприменима механика классическая и к изучению явлений микромира [это область квантовой механики]. Но они основаны на классической механики. В остальных областях => классическая механика даёт достаточно точные результаты.

1. Что называют динамикой?

2. Перечислите меры движения материальной точки

3. Сформулируйте законы Ньютона.

4. Каковы границы области применения классической механики Ньютона?

www.emomi.com

Смотрите так же:

  • Восстановление срока подачи жалобы по административному делу Заявление о восстановлении срока по административным делам Подготовить самостоятельно заявление о восстановлении срока по административным делам не составит труда, требуются только уважительные причины пропуска этого срока. Одной из […]
  • Пособие по керамике Глина, виды глины Глина — основа гончарного производства, глинозем -значительная часть химического состава глинообразующих минералов (глинозем — природная окись алюминия. — Ред.). В смеси с водой глина образует тестообразную массу, […]
  • Правила оон 24 Правила ЕЭК ООН N 24 "Единообразные предписания, касающиеся: I. Официального утверждения двигателей с воспламенением от сжатия в отношении выброса видимых загрязняющих веществ. II. Официального утверждения автотранспортных средств в […]
  • 582 приказ министерства Приказ Министерства экономического развития РФ от 15 марта 2017 г. № 107 "О внесении изменений в Методические указания по разработке и реализации государственных программ Российской Федерации, утвержденные приказом Минэкономразвития […]
  • Правила безопасности по охране труда при эксплуатации электроустановок Инструкция по технике безопасности при эксплуатации электроустановок до 1000 В Общество с ограниченной ответственностью «Пион» Согласовано председатель профсоюза работников Сидоров Сидоров П.П. Воронов Воронов А.В. Инструкция по охране […]
  • Приемка товара в аптеке приказы Порядок приемки лекарственных средств от поставщика Внимание! При пользовании статьями, консультациями и комментариями просим Вас обращать внимание на дату написания материала Вопрос: Необходима ли комиссия по приемке лекарственных […]

Обсуждение закрыто.