Механизмы наследования полигенных признаков

www.botan0.ru

Наследование признаков, обусловленных взаимодействием неаллельных генов

Наследование признаков, обусловленных взаимодействием неаллельных генов

На характер наследования в ряду поколений сложных признаков определенное влияние оказывает тип взаимодействия неаллельных генов (см. разд. 3.6.5.2). Различные комбинации их аллелей могут обеспечивать появление нового признака или его варианта, исчезновение признака, изменение характера его проявления у потомков. Существенную роль в этом играет также характер наследования взаимодействующих генов по отношению друг к другу. Они могут наследоваться независимо или сцепленно, и от этого зависит, с какой частотой в потомстве будут появляться комбинации аллелей, обеспечивающие тот или иной тип их взаимодействия (полимерия, комплементарность, эпистаз).

Ниже будут рассмотрены закономерности наследования признаков при независимом наследовании взаимодействующих неаллельных генов.

Наследование признаков при полимерном взаимодействии генов. В том случае, когда сложный признак определяется несколькими парами генов в генотипе и их взаимодействие сводится к накоплению эффекта действия определенных аллелей этих генов, в потомстве гетерозигот наблюдается разная степень выраженности признака, зависящая от суммарной дозы соответствующих аллелей. Например, степень пигментации кожи у человека, определяемая четырьмя парами генов, колеблется от максимально выраженной у гомозигот по доминантным аллелям во всех четырех парах (Р1Р1Р2Р2Р3Р3Р4Р4) до минимальной у гомозигот по рецессивным аллелям (р1р1р2р2р3р3р4р4) (см. рис. 3.80). При браке двух мулатов, гетерозиготных по всем четырем парам, которые образуют по 2 4 = 16 типов гамет, получается потомство, 1/256 которого имеет максимальную пигментацию кожи, 1/256 — минимальную, а остальные характеризуются промежуточными показателями экспрессивности этого признака. В разобранном примере доминантные аллели полигенов определяют синтез пигмента, а рецессивные — практически не обеспечивают этого признака. В клетках кожи организмов, гомозиготных по рецессивным аллелям всех генов, содержится минимальное количество гранул пигмента.

В некоторых случаях доминантные и рецессивные аллели полигенов могут обеспечивать развитие разных вариантов признаков. Например, у растения пастушьей сумки два гена одинаково влияют на определение формы стручочка. Их доминантные аллели образуют одну, а рецессивные — другую форму стручочков. При скрещивании двух дигетерозигот по этим генам (рис. 6.16) в потомстве наблюдается расщепление 15:1, где 15/16 потомков имеют от 1 до 4 доминантных аллелей, а 1/16, не имеет доминантных аллелей в генотипе.

Наследование при комплементарном взаимодействии генов. Если сложный признак формируется в результате взаимодополняющего действия определен-ленных аллелей неаллельных генов, то, очевидно, он будет появляться лишь у тех организмов, которые имеют в генотипе именно такую комбинацию аллелей.

Например, присутствие в генотипе доминантных аллелей обоих неаллельных генов обеспечивает развитие сложного признака, чего не происходит при отсутствии одного из них в доминантном состоянии. В этом случае при скрещивании двух дигетерозиготных организмов, имеющих данный признак, лишь у определенной части потомства (9/16) будет формироваться такой признак, а у остальных (7/16) он не разовьется (рис. 6.17).

Рис. 6.16. Полимерное наследование формы стручочка у пастушьей сумки

Возможна также ситуация, когда каждый из неаллельных генов в отсутствие доминантного аллеля другого обеспечивает развитие определенного варианта

признака, а вместе они формируют новый его вариант (рис. 6.18). Тогда расщепление в потомстве двух дигетерозигот будет соответствовать расщеплению при независимом наследовании признаков (9:3:3:1).

У человека два гена, детерминирующих отложение в волосах черного и красного пигментов; при определенных сочетаниях их аллелей обеспечивают появление нового признака — особого блеска волос.

Рис. 6.17. Комплементарное взаимодействие генов I

(наследование признака окраски лепестков у душистого горошка)

Наследование признаков при эпистатическом взаимодействии генов.

При эпистазе один из генов (В) выражается фенотипически лишь при отсутствии в генотипе определенного аллеля другого гена (А). В его присутствии действие гена В не проявляется. В строгом смысле слова, этот вид взаимодействия неаллельных генов может быть рассмотрен как вариант взаимодополняющего действия определенных аллелей этих генов, когда один из них способен обеспечить развитие признака, но лишь в присутствии определенного аллеля другого гена. В этой ситуации фенотип организма зависит от конкретного сочетания аллелей неаллельных генов в их генотипах и расщепление по фенотипу в потомстве двух дигетерозигот по этим генам может быть различным.

Рис. 6.18. Комплементарное взаимодействие генов II

(наследование формы гребня у кур):

I — А?bb —розовидная, II — ааВ? — гороховидная, III — А?В? —ореховидная, IV — aabb —листовидная

При доминантном эпистазе, когда доминантный аллель одного гена (А) препятствует проявлению аллелей другого гена (В или b), расщепление в потомстве зависит от их фенотипического значения и может выражаться соотношениями 12:3:1 или 13:3 (рис. 6.19). При рецессивном эпистазе ген, определяющий какой-то признак (В), не проявляется у гомозигот по рецессивному аллелю другого гена (аа). Расщепление в потомстве двух дигетерозигот по таким генам будет соответствовать соотношению 9:3:4 (рис. 6.20). Невозможность формирования признака при рецессивном эпистазе расценивают также как проявление несостоявшегося комплементарного взаимодействия, которое возникает между доминантным аллелем эпистатического гена и аллелями гена, определяющего этот признак.

С этой точки зрения может быть рассмотрен «Бомбейский феномен» у человека, при котором у организмов-носителей доминантного аллеля гена, определяющего группу крови по системе АВ0 (I A или I B ), фенотипически эти аллели не проявляются и формируется I группа крови (см. рис. 3.82). Отсутствие фенотипического проявления доминантных аллелей гена I связывают с гомозиготностью некоторых организмов по рецессивному аллелю гена Н (hh), что препятствует формированию антигенов на поверхности эритроцитов. В браке дигетерозигот по генам Н и I (НhI A I B ) 1/4 потомства будет иметь фенотипически I группу крови в связи с их гомозиготностью по рецессивному аллелю гена Н — hh.

Рассмотренные выше расщепления по фенотипу в потомстве от скрещивания гетерозиготных родителей или анализирующего скрещивания как при моногенном типе наследования признаков, так и в случае взаимодействия неаллельных генов носят вероятностный характер. Такие расщепления наблюдаются лишь в том случае, если реализуются все возможные встречи разнообразных гамет при оплодотворении и все потомки оказываются жизнеспособными. Выявление близких расщеплений вероятно при анализе большого количества потомков, когда случайные события не способны изменить характер расщепления. Г. Мендель, разработавший приемы гибридологического анализа, впервые применил статистический подход к оценке получаемых результатов. Он анализировал большое число потомков, поэтому расщепления по фенотипу, наблюдаемые им в опытах, оказались близкими к расчетным, которые получаются при учете всех типов гамет, образуемых в мейозе, и их встреч при оплодотворении.

Рис. 6.19. Эпистатическое взаимодействие генов. Доминантный эпистаз (наследование масти у лошадей)

Рис. 6.20. Эпистатическое взаимодействие генов. Рецессивный эпистаз (наследование пигментации шерсти у мышей)

botan0.ru

Механизмы наследования полигенных признаков

Кумулятивная полимерия. Значительная часть признаков у эукариот, наследуемых по-лигенно, находится под контролем не двух-трех, а большего числа генов (их количество пока еще трудно определить). При моногенном типе наследования в моногибридном скрещивании один ген проявляется в двух альтернативных состояниях без переходных форм. Такие признаки относятся к качественным, при их анализе, как правило, не проводится никаких измерений. При неаллельном взаимодействии двух несцепленных генов даже при сохранении менделевского отношения 9:3:3:1 фенотип первого поколения гибридов зависит от действия обоих генов. Однако наследование качественных признаков может определяться взаимодействием трех и более генов.

При этом каждый из этих генов имеет свою долю влияния на развитие признака. Примером может служить наследование красной и белой окраски зерен пшеницы в опытах шведского генетика Нильсона-Эле. Результаты этих опытов были опубликованы в 1909 г.

При скрещивании сорта пшеницы, зерна которой имели темно-красную окраску, с сортом, имеющим белые зерна, гибриды первого поколения имели красную окраску более светлых тонов. Во втором поколении получилось такое соотношение по фенотипу: на 63 окрашенных зерна с различными оттенками красного цвета приходилась 1 белое зерно (неокрашенное). Эти результаты были объяснены Нильсоном-Эле следующим образом. Темно-красная окраска зерен пшеницы обусловлена действием трех пар доминантных генов, а белая — трех пар рецессивных, при этом по мере увеличения числа доминантных генов окраска становится более интенсивной. Обозначим доминантные аллели трех генов, локализованных в разных хромосомах, прописными буквами А1 А2 А3 а рецессивные — строчными а1 а1 а3, тогда генотипы исходных форм будут: А1А1 А2А2 А3А3 x а1я1 а2а2 a33a.

Окраска зерен у гибридов первого поколения A1a1 A2a2 A3a3 при наличии трех доминантных аллелей будет промежуточной светло-красной. При скрещивании гибридов первого поколения A1a1 A2a2 A3a3 x A1a1 A2a2 A3a3 у каждого из гибридов образуется по 8 типов гамет, поэтому во втором поколении ожидается расщепление в 64-х долях (8 х 8). Среди 63/64 растений с окрашенными зернами интенсивность окраски усиливается по мере увеличения числа доминантных аллелей различных генов в генотипе. Видимо, каждый доминантный ген способствует увеличению количества синтезированного пигмента, и в этом смысле такой признак можно отнести к количественным.

Тип аддитивного действия генов, каждый из которых оказывает свою, часто небольшую, долю влияния на признак, называется кумулятивной полимерией. Используя решетку Пеннета, можно подсчитать частоты доминантных генов среди генотипов второго поколения. Для этого в каждой из 64 клеток вместо генотипа записывается число присутствующих в нем доминантных аллелей. Определив частоты доминантных аллелей, можно убедиться, что генотипы с числом доминантных генов 6,5,4,3, 2, 1,0 встречаются 1,6,15,20,15,6,1 раз соответственно. Эти данные представлены в виде графика на рисунке. На горизонтальной оси указано число доминантных генов в генотипе, а на вертикальной — частоты их встречаемости. С увеличением числа генов, определяющих один признак, этот график приближается к идеальному нормальному распределению.

Такого типа графики характерны для количественных признаков, таких как рост, вес, длительность жизни, яйценоскость и других признаков, показатели которых можно измерить.

К количественным относятся признаки, варьирующие более или менее непрерывно от одной особи к другой, что позволяет распределить особей по классам в соответствии со степенью выраженности признака. На рисунке приведен пример распределения по росту у мужчин. Эта выборка разделена на 7 классов с 5 см-интервалом. Мужчины со средним ростом (171-175 см) составляют большую часть выборки. С наименьшей частотой встречаются мужчины, которые включены в класс с ростом 156—160 см и 186—190 см. С увеличением выборки и с уменьшением классового интервала график может приблизиться к нормальному распределению по росту.

Фенотипическая изменчивость без разрывов в проявлении, представленная на графике нормального распределения признака, называется непрерывной. Непрерывная изменчивость количественных признаков зависит от двух причин: 1) от генетического расщепления по большому числу генов, 2) от влияния среды, как причины модификационной изменчивости.

Впервые датский генетик Иогансен показал, что непрерывная изменчивость такого количественного признака как масса бобов фасоли Phaseolus vulgaris зависит как от генетических, так и средовых факторов. Путем инбридинга в течение ряда поколений он вывел несколько чистых (гомозиготных) линий, различающихся по средней массе бобов. Например, средняя масса бобов в линии 1 была 642 мг, в линии 13 —454 мг, в линии 19 — 351 мг. Далее Иоган-сен вел отбор крупных и мелких бобов в каждой линии с 1902 по 1907 г. Вне зависимости от массы родительских семян средняя масса бобов после 6 лет отбора была такой же, как и в исходной линии. Так влинии № 13 при массе родительских семян от 275 мгдо 575 мг средняя масса семян в потомстве сохранилась на том же уровне ±450 мг. При этом в каждой линии масса бобов варьировала от минимальных до максимальных значений, а наиболее многочисленным был класс со средней массой, что характерно для количественных признаков. Отбор в чистых линиях оказался невозможен .

Еще один пример, в 1977 г. Д.С. Билева, Л.Н. Зимина, А.А. Малиновский изучали влияние генотипа и среды на продолжительность жизни двух инбредных линий Drosophila melanogaster. Путем инбридинга и отбора были выведены две линии № 5 и № 3, четко различающиеся по длительности жизни. Продолжительность жизни определялась на трех вариантах корма: полноценном (дрожжи, манная крупа, сахар, агар-агар), обедненном (манная крупа, сахар, агар-агар) и сахарном (сахар, агар-агар). Обеднение состава корма приводило к уменьшению длительности жизни. Продолжительность жизни самок 5-й линии на сахарном корме (в днях) снизилась с 58+2,1 до 27,2±1,8, а самцов с 63,7±2,9 до 34,8±1,5, т.е. оказалась примерно в 2 раза меньше, чем на полноценном корме. Такая же закономерность была характерна и для самок и самцов 3-й линии. Длительность жизни самок этой линии снизилась с 50,7±],9 до 24,3±1,2, а самцов с 32,9+2,9 до 21,6±1,5 дня. При этом гистограмма, отражающая изменчивость по данному признаку на полноценном корме, близка к гистофамме представленной на рисунке, я, а на обедненном и сахарном наблюдается ассиметричное распределение со сдвигом средней величины в сторону уменьшения длительности жизни.

Некумулятивная полимерия. Наряду с кумулятивной (аддитивной) полимерией известны случаи наследования по типу некумулятивной (неаддитивной) полимерии, когда характер проявления признака не меняется в зависимости от числа доминантных полимерных генов. Так у кур оперенность ног определяется доминантными аллелями двух генов A1 и А2:

Р А1А1 А2А2 х а1а1a2a2
оперенная неоперенная оперенные

F2 9 А1_А2_; 3 А1_ а2а2:; 3 a1a1 A2_; 1 а1а1 a2a2
оперенные (15) неоперенные (1)

В F2 среди 15/16 гибридов с оперенными ногами есть такие, которые имеют четыре доминантных аллеля (А1А1 А2А2), три (А1А’1 А2а2), два (А1а1 А2а2) или всего один (А1а1 а2а2), характер оперенности ног в этих случаях один и тот же.

Главные гены в системе полигенов. Среди генов, влияющих на количественный признак, может оказаться «сильный» или главный ген, и более «слабые» гены. Действие главного гена иногда настолько существеннее действия других генов, что признак, кодируемый им, наследуется по мекделевским законам. Изменчивость одного и того же признака может находиться под контролем как одного главного гена, так и полигенов. Например, карликовость у человека в случае ахондроплазии обусловлена специфическим главным геном, в то время как изменчивость по росту в нормальной популяции индивидов является примером полигенной изменчивости. Гены, действие которых заметно сильнее действия других генов на этот признак, можно изучать по отдельности от действия других генов. С другой стороны, один и тот же ген вследствие плейотропного действия, может оказывать сильное влияние на один признак и менее значительное на другой признак. К тому же к главным генам могут быть отнесены те, которые определяют признаки, наследуемые по законам Менделя, без их отношения к системе полигенов. Подразделение генов на главные и неглавные не всегда обосновано, хотя бесспорно, что их роль в определении признака может быть различна.

Широко распространенные болезни человека, например, артериальная гипертензия, ишемическая болезнь сердца, бронхиальная астма, язвенная болезнь желудка, наследуются полигенно. При этом тяжесть заболевания зависит не только от совокупного действия множества генов, но и от провоцирующих средовых факторов.

— Вернуться в оглавление раздела «Генетика.»

medicalplanet.su

полигенное наследование

Смотреть что такое «полигенное наследование» в других словарях:

полигенное наследование — Наследование количественных признаков, т.е. признаков, выражение которых определяется взаимодействием значительного числа генов (полигенов). [Арефьев В.А., Лисовенко Л.А. Англо русский толковый словарь генетических терминов 1995 407с.] Тематики… … Справочник технического переводчика

полигенное наследование — poligeninis paveldėjimas statusas T sritis augalininkystė apibrėžtis Paveldėjimas požymio, kurį nulemia daugelis kartu veikiančių genų. atitikmenys: angl. polygeny; polygenic inheritance rus. полигения; полигенное наследование ryšiai: sinonimas – … Žemės ūkio augalų selekcijos ir sėklininkystės terminų žodynas

Наследование полигенное полигения — Наследование полигенное, полигения * наследаванне палігеннае, палігенія * polygenic inheritance or polygeny наследование признаков, которые определяются многими генами, обладающими в отдельности слабым действием. Фенотипическое проявление… … Генетика. Энциклопедический словарь

наследование — Передача генетической информации одним поколением другому (родителями или родителем потомству); типы и характер Н. зависят от характера воспроизведения генетического материала (удвоение и распределение), от локализации генов (ядерная,… … Справочник технического переводчика

наследование — inheritance наследование. Передaчa генетической информации одним поколением другому (родителями или родителем потомству); типы и характер Н. зависят от характера воспроизведения генетического материала (удвоение и распределение), от локализации… … Молекулярная биология и генетика. Толковый словарь.

наследование полигенное — (греч. poly много + гены) Н. признака, контролируемого совместно группой неаллельных генов … Большой медицинский словарь

НАСЛЕДОВАНИЕ ПОЛИГЕННОЕ — Тип наследования признаков, обусловленных действием многих генов, каждый из которых оказывает лишь слабое действие. Фенотипически проявление полигенно обусловленного признака зависит от условий внешней среды. У потомков наблюдается непрерывный… … Термины и определения, используемые в селекции, генетике и воспроизводстве сельскохозяйственных животных

Диате́зы — (diatheses: греч. diathesis предрасположение, склонность к чему либо) аномалии конституции, характеризующиеся предрасположенностью к некоторым болезням и определенному типу неадекватных реакций на обычные раздражители. Учение о Д. окончательно не … Медицинская энциклопедия

Бронхиа́льная а́стма — (asthma bronchiale; греч. asthma тяжелое дыхание, удушье) заболевание, основным признаком которого являются приступы или периодические состояния экспираторного удушья, обусловленные патологической гиперреактивностью бронхов. Эта гиперреактивность … Медицинская энциклопедия

polygenic inheritance — polygenic inheritance. См. полигенное наследование. (Источник: «Англо русский толковый словарь генетических терминов». Арефьев В.А., Лисовенко Л.А., Москва: Изд во ВНИРО, 1995 г.) … Молекулярная биология и генетика. Толковый словарь.

dic.academic.ru

Полигенное наследование

Определение понятия и сущность полигенного наследования, примеры полимерии. Особенности формирования полигенных признаков. Тип аддитивного действия генов. Формы кумулятивной полимерии и сущность доминантного эпистаза. Концепция полигенных болезней.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Сущность полигенного наследования

Наряду с отдельными генами, представленными множеством форм, существуют и полигенные признаки, т.е. признаки, контролируемые многими генами, находящимися в разных участках хромосомы, а иногда даже и в разных парах хромосом. У человека среди известных нам примеров этого рода можно назвать такие признаки, как рост, умственные способности, телосложение, а также цвет волос и цвет кожи.

Взаимодействие нескольких неаллельных генов с одинаковым действием называется полимерией, или однозначным действием генов.

Примером полимерии является наследование цвета кожи у человека. Этот признак определяется четырьмя генами, ответственными за выработку пигмента меланина. Чем больше активных генов, запускающих синтез меланина, имеется в клетке, тем темнее ее окраска. Эти гены локализованы в четырех парах разных хромосом. У людей с самой темной окраской кожи (негры) имеется восемь аллелей этих генов (поскольку клетки диплоидны): A1A1A2A2A3A3A4A4 (гены действуют одинаково, поэтому их обозначают одной и той же буквой). У человека с самой светлой кожей нет ни одного активного аллеля: а1а1а2а2а3а3а4а4. Дети таких двух людей получат четыре активных (доминантных) аллеля от одного из родителей и цвет их кожи будет промежуточным. Генотип детей будет: A1a1, а2А2, a3A3, а4A3.

В зависимости от числа доминантных генов в генотипе может формироваться более светлый или более темный цвет кожи. Такой тип взаимодействия генов называется кумулятивной полимерией.

Полигенные признаки с трудом поддаются изучению, потому что непросто вычленить эффект каждого отдельного гена в данном фенотипическом признаке, отделив его от эффекта других генов. Влияние среды еще больше запутывает дело; скажем, в нашем примере с цветом кожи люди могут быть более или менее смуглыми в зависимости от интенсивности загара. эпистаз полигенный наследование кумулятивный

Полигенные признаки (ПП)Размещено на http://www.allbest.ru/

— непрерывные (чаще — количественные) признаки, представленные в человеческих популяциях (семьях) множеством фенотипических классов, между которыми нет четкой границы.

В формировании признака принимает участие множество генов (серия полигенов). Конечный уровень ПП — результат взаимодействия всех генов из серии полигенов.Размещено на http://www.allbest.ru/

Среда всегда оказывает существенное влияние на формирование ПП. Под влиянием среды может появиться даже новый фенотипический класс.

Размещено на http://www.allbest.ru/

Наследуемость (Н) — >50% 2 или Кн, который рассчитывается по формуле: Кн = G/Е x 100%, где Кн — коэффициент наследования, G — наследственные факторы, Е — факторы окружающей среды. В таблице 4 приведены значения ряда коэффициентов наследования мультифакториальных признаков и заболеваний.

* Степень выраженности признака или тяжесть течения болезни у пробанда. Чем сильнее выражен признак или тяжелее протекает заболевание у больного родственника, тем выше риск его развития у здоровых родственников.

* Общность генов у пробанда и его родственников (или близкая степень родства с больным родственником). Чем больше общих генов у больного и его родственников, тем выше риск развития у последних признака или заболевания. Например, популяционная частота псориаза составляет 0,75%. У родственников I степени родства частота его развития — 5,6%, у родственников II степени родства — 3,0-3,5%, у родственников III степени родства — 1,75%, у родственников IV степени родства — 0,75%.

* Редко поражаемый пол. Мультифакториальный признак или заболевание проявляется чаще у лиц редко поражаемого пола (критерий, названный эффектом Картера). Например, врожденный пилоростеноз у мальчиков встречается в 2-5 раз чаще, чем у девочек, т.е. в данном случае женский пол — редко поражаемый пол. Однако частота этой болезни у будущих детей пораженных пилоростенозом девочек достигнет 10-20%, тогда как у будущих детей пораженных пилоростенозом мальчиков — только 2-6%. Другой пример — язвенная болезнь желудка и двенадцатиперстной кишки, как правило, проявляющаяся у лиц мужского пола и гораздо реже — у лиц женского пола. Однако ее частота у детей больной женщины выше, чем у детей больного мужчины.

* Число больных родственников. Чем больше в родословной родственников, имеющих мультифакториальный признак или заболевание, тем выше риск его развития у потомков

Главные гены в системе полигенов. Среди генов, влияющих на количественный признак, может оказаться «сильный» или главный ген, и более «слабые» гены. Действие главного гена иногда настолько существеннее действия других генов, что признак, кодируемый им, наследуется по менделевским законам. Изменчивость одного и того же признака может находиться под контролем как одного главного гена, так и полигенов. Например, карликовость у человека в случае ахондроплазии обусловлена специфическим главным геном, в то время как изменчивость по росту в нормальной популяции индивидов является примером полигенной изменчивости. Гены, действие которых заметно сильнее действия других генов на этот признак, можно изучать по отдельности от действия других генов. С другой стороны, один и тот же ген вследствие плейотропного ( т.е. множественного) действия, может оказывать сильное влияние на один признак и менее значительное на другой признак. К тому же к главным генам могут быть отнесены те, которые определяют признаки, наследуемые по законам Менделя, без их отношения к системе полигенов. Подразделение генов на главные и неглавные не всегда обосновано, хотя бесспорно, что их роль в определении признака может быть различна. Широко распространенные болезни человека, например, артериальная гипертензия, ишемическая болезнь сердца, бронхиальная астма, язвенная болезнь желудка, наследуются полигенно. При этом тяжесть заболевания зависит не только от совокупного действия множества генов, но и от провоцирующих средовых факторов.

Кумулятивная полимерия. Значительная часть признаков у эукариот, наследуемых полигенно, находится под контролем не двух-трех, а большего числа генов (их количество пока еще трудно определить).

Тип аддитивного действия генов, каждый из которых оказывает свою, часто небольшую, долю влияния на признак, называется кумулятивной полимерией. Используя решетку Пеннета, можно подсчитать частоты доминантных генов среди генотипов второго поколения. Для этого в каждой из 64 клеток вместо генотипа записывается число присутствующих в нем доминантных аллелей. Определив частоты доминантных аллелей, можно убедиться, что генотипы с числом доминантных генов 6,5,4,3, 2, 1,0 встречаются 1,6,15,20,15,6,1 раз соответственно. Эти данные представлены в виде графика на рисунке. На горизонтальной оси указано число доминантных генов в генотипе, а на вертикальной — частоты их встречаемости. С увеличением числа генов, определяющих один признак, этот график приближается к идеальному нормальному распределению.

К количественным относятся признаки, варьирующие более или менее непрерывно от одной особи к другой, что позволяет распределить особей по классам в соответствии со степенью выраженности признака. На рисунке приведен пример распределения по росту у мужчин. Эта выборка разделена на 7 классов с 5 см-интервалом. Мужчины со средним ростом (171-175 см) составляют большую часть выборки. С наименьшей частотой встречаются мужчины, которые включены в класс с ростом 156—160 см и 186—190 см. С увеличением выборки и с уменьшением классового интервала график может приблизиться к нормальному распределению по росту. Фенотипическая изменчивость без разрывов в проявлении, представленная на графике нормального распределения признака, называется непрерывной. Непрерывная изменчивость количественных признаков зависит от двух причин: 1) от генетического расщепления по большому числу генов, 2) от влияния среды, как причины модификационной изменчивости. Впервые датский генетик Иогансен показал, что непрерывная изменчивость такого количественного признака как масса бобов фасоли Phaseolus vulgaris зависит как от генетических, так и средовых факторов. Путем инбридинга в течение ряда поколений он вывел несколько чистых (гомозиготных) линий, различающихся по средней массе бобов. Например, средняя масса бобов в линии 1 была 642 мг, в линии 13 —454 мг, в линии 19 — 351 мг. Далее Иоган-сен вел отбор крупных и мелких бобов в каждой линии с 1902 по 1907 г. Вне зависимости от массы родительских семян средняя масса бобов после 6 лет отбора была такой же, как и в исходной линии. Так влинии № 13 при массе родительских семян от 275 мгдо 575 мг средняя масса семян в потомстве сохранилась на том же уровне ±450 мг. При этом в каждой линии масса бобов варьировала от минимальных до максимальных значений, а наиболее многочисленным был класс со средней массой, что характерно для количественных признаков. Отбор в чистых линиях оказался невозможен .

Кумулятивная полимерия имеет 2 формы:

1. Аддитивная полигения без порога действия.

Каждый ген из серии полигенов вносит свою долю в Размещено на http://www.allbest.ru/

формирование признака (болезни).

Проявление признака в семье может меняться от нулевого до максимального значений в зависимости от количества генов со сходным действием.Размещено на http://www.allbest.ru/

Предел развития признака (норма реакции) детерминируется общим числом полигенов в генотипе.

Размещено на http://www.allbest.ru/

Так наследуются: рост, масса тела, интенсивность пигментации кожи, интеллект, продолжительность жизни.Размещено на http://www.allbest.ru/

Аддитивная полигения с порогом действия

Признак (болезнь) проявляется в том случае, если в генотипе окажется пороговая величина генов.

Размещено на http://www.allbest.ru/

Так наследуются : гипертоническая болезнь, нормальное развитие верхней губы.

Размещено на http://www.allbest.ru/

Некумулятивная полимерия. Наряду с кумулятивной (аддитивной) полимерией известны случаи наследования по типу некумулятивной (неаддитивной) полимерии, когда характер проявления признака не меняется в зависимости от числа доминантных полимерных генов.

Среди генов, влияющих на количественный признак, может оказаться «сильный» или главный ген, и более «слабые» гены. Действие главного гена иногда настолько существеннее действия других генов, что признак, кодируемый им, наследуется по менделевским законам. Изменчивость одного и того же признака может находиться под контролем как одного главного гена, так и полигенов. Например, карликовость у человека в случае ахондроплазии обусловлена специфическим главным геном, в то время как изменчивость по росту в нормальной популяции индивидов является примером полигенной изменчивости. Гены, действие которых заметно сильнее действия других генов на этот признак, можно изучать по отдельности от действия других генов. С другой стороны, один и тот же ген вследствие плейотропного действия, может оказывать сильное влияние на один признак и менее значительное на другой признак. К тому же к главным генам могут быть отнесены те, которые определяют признаки, наследуемые по законам Менделя, без их отношения к системе полигенов. Подразделение генов на главные и неглавные не всегда обосновано, хотя бесспорно, что их роль в определении признака может быть различна. Широко распространенные болезни человека, например, артериальная гипертензия, ишемическая болезнь сердца, бронхиальная астма, язвенная болезнь желудка, наследуются полигенно. При этом тяжесть заболевания зависит не только от совокупного действия множества генов, но и от провоцирующих средовых факторов.

Эпистаз — подавление действия гена, находящегося в одной неаллельной паре, действием гена из другой неаллельной пары, например подавление геном А гена В, т.е. A >B или A >bb. Выделяют доминантный и рецессивный эпистаз.

Доминантный эпистаз: доминантный аллель одной неаллельной пары, находящийся в гомозиготном (АА) или гетерозиготном (Аа) состоянии, подавляет проявление неаллельного к нему доминантного аллеля другой аллельной пары, находящейся в состоянии АА или Аа. Гены, дающие доминантный эффект, называются эпистатическими генами или супрессорами (ингибиторами). 0ни могут быть как доминантными, так и рецессивными. Подавляемые гены именуются гипостатическими генами.

Если гены, находящиеся в других неаллельных парах, усиливают доминантное действие эпистатических генов, то они называются генами-модификаторами (интенсификаторами).

Такой тип взаимодействия характерен для неаллельных генов, участвующих в регуляции онтогенеза, например генов иммунного ответа (генная сеть — 2190 генов; см. главу 15) или генов эритропоэза (генная сеть — 200 генов).

Возможны два варианта доминантного эпистаза:

* гомозиготы с рецессивными аллелями (аа) отличаются по фенотипу от гомозигот с доминантными аллелями (АА);

* гомозиготы по доминантным аллелям (АА) не отличаются по фенотипу от гомозигот по рецессивным аллелям (аа).

Рецессивный эпистаз проявляется в том, что рецессивный аллель одного гена подавляет действие неаллельного ему доминантного гена (аа>В), а между доминантными генами наблюдается комплементарность (см. ниже). Примером рецессивного эпистаза у человека служит «бомбейский феномен», связанный с рождением детей с I (I 0 I 0 ) и IV (I А I В ) группами крови от родителей с I (I 0 I 0 ) и II (I A I°) группами крови, тогда как теоретически от таких родителей должны рождаться дети с I (I 0 I 0 ) или II (I A I 0 ) группами крови. Феномен можно объяснить либо наличием не распознанного у одного из родителей редкого гетерозиготного варианта III группы крови (I B I 0 ), либо наличием в генотипе ребенка с IV группой крови (I А I В ) рецессивных генов-модификаторов, которые в гомозиготном состоянии подавляют экспрессию антигенов, находящихся на поверхности эритроцитов, т.е. дают непредсказуемый фенотипический эффект.

Кроме рецессивного эпистаза, выделен двойной рецессивный эпистаз; при нем у рецессивных генов собственное фенотипическое проявление, а в двойных гомозиготах рецессивные аллели подавляют друг друга: аа >bb, bb >аа.

4. Наследование полигенное

Тип наследования признаков, обусловленных действием многих генов, каждый из которых оказывает лишь слабое действие. Фенотипически проявление полигенно обусловленного признака зависит от условий внешней среды. У потомков наблюдается непрерывный ряд вариаций количественного проявления подобного признака, а не появление четко различающихся по фенотипу классов. В ряде случаев при блокировании отдельного гена признак не проявляется вообще, несмотря на его полигенную обусловленность. Это свидетельствует о пороговом проявлении признака.

Комплементарность, эпистаз и полимерия (о которых Вы спрашивали в другом вопросе) и есть разные случаи полигенного наследования.

Наиболее сложное наследование — полигенное, при котором аллели нескольких разных локусов взаимодействуют друг с другом по принципу аддитивности, обусловливая таким образом риск проявления признака или заболевания. Каждый добавочный «плохой» аллель увеличивает предрасположенность индивида, но ни один из локусов не является существенным для этиологии данного заболевания. Поэтому в данном случае невозможно по фенотипу определить генотип. Расчеты показывают, что картирование полигенных заболеваний в общей популяции людей бесперспективно. Тем не менее, для поиска полигенных факторов при скрещивании линий животных, отличающихся по физиологическим признакам, были разработаны методы, использующие весь потенциал полной карты ПДРФ-маркеров. Подобные исследования могут выявить специфические локусы, которые в дальнейшем следует изучать более прямыми методами у человека.

В некоторых семьях встречаются болезни, наследование которых отличается от наследованияхромосомных или моногенных болезней . Эти болезни называют полигенными, или мультифакториальными . Основные сведения о природе полигенных болезней были получены в популяционных исследованиях и с помощью близнецового метода. Оказалось, что конкордантность однояйцевых близнецов по проявлению полигенных болезней и семейный повторный риск таких болезней выше, чем следовало бы ожидать при их случайном распределении, но ниже, чем должно было бы быть при их менделевском наследовании (даже при условии неполной пенетрантности или низкой экспрессивности генетического дефекта).

Давно известно, что распространенные пороки развития (например, гипертоническая болезнь ,ИБС , сахарный диабет , язвенная болезнь и шизофрения ) и врожденные нарушения (например,расщелина губы , расщелина неба , позвоночная расщелина, миеломенингоцеле в сочетании санэнцефалией и врожденные пороки сердца ) носят семейный характер, что свидетельствует об их зависимости от наследственных факторов. Это — полигенные болезни. Их этиология очень разнообразна. Расщелину губы и неба иногда вызывают дефекты одного гена, иногда хромосомные аномалии, но чаще всего — многочисленные наследственные и внешние факторы. Аналогично ИБС изредка обусловлена дефектами одного гена (например, при семейной гиперхолестеринемии ), но чаще всего — множеством факторов.

Концепция полигенных болезней предполагает, что каждый конкретный случай вызывается взаимодействием множества наследственных и внешних факторов, что приводит к семейной предрасположенности к болезни, но без четкого менделевского наследования.

Полигенные болезни обусловлены взаимодействием множества независимых генов. Человек, унаследовавший определенную комбинацию генов, предрасположен к болезни, развитию которой способствуют также неблагоприятные внешние факторы. Другой член семьи имеет такую же предрасположенность к болезни если он унаследовал сходную комбинацию генов. Так как у родных братьев и сестер 50% аллелей одинаковые, вероятность того, что кто-либо из них имеет ту же комбинацию генов, составляет (1/2) в степени n, где n -число генов, необходимых для проявления признака (предполагается, что сцепление генов отсутствует).

— при полигенном наследовании часто наблюдается неравномерное распределение признака между полами;

— повторный риск полигенной болезни зависит от пола, тяжести болезни, степени генетической предрасположенности (различающейся в разных семьях), частоты болезни в данной семье, распространенности болезни среди населения.

Поскольку точное число генов, обусловливающих полигенные признаки, неизвестно, степень риска оценивают исходя из эмпирических данных, то есть числа больных в описанных семьях.

В отличие от моногенных заболеваний , когда 25 или 50% родственников больного первой степени также больны, полигенные болезни обычно выявляют у 5-10% таких родственников. Более того, риск возникновения полигенных болезней в разных семьях неодинаков, причем обычно риск заболевания тем выше, чем больше родственников больны и чем тяжелее протекает у них болезнь. Например, риск заболевания у братьев и сестер ребенка с односторонней расщелиной губы составляет 2,5%, а с двусторонней расщелиной губы — 6%.

Полагают, что полигенная этиология характерна для многих болезней, которые развиваются после подросткового периода. Болезни, развивающиеся в более позднем возрасте, в среднем меньше зависят от наследственных факторов. Выявлено девять полигенных болезней, в которых роль наследственных факторов снижается с возрастом.

revolution.allbest.ru

Смотрите так же:

  • Методическое пособие школа россии Методическое пособие школа россии Федоскина О. В.Математика. Сложение и вычитание в пределах 10. 1 класс Глаголева Ю. И.Математика. Проверочные работы. 2 класс Глаголева Ю. И.Математика. Проверочные работы. 1 класс Рыдзе О. А.Математика. […]
  • Президиум верховного суда республики мордовии Верховный суд Республики Мордовия С конца 20-х годов ХХ века начинается история развития Верховного Суда Республики Мордовия. Это время примечательно еще и тем, что шло оформление мордовской государственности. Многие народы России, в […]
  • 239 федеральный закон 239 федеральный закон ФЕДЕРАЛЬНЫЙ ЗАКОН от 18.07.11 N 239-ФЗ О ВНЕСЕНИИ ИЗМЕНЕНИЙ В ОТДЕЛЬНЫЕ ЗАКОНОДАТЕЛЬНЫЕ АКТЫ РОССИЙСКОЙ ФЕДЕРАЦИИ В СВЯЗИ С СОВЕРШЕНСТВОВАНИЕМ ПРАВОВОГО ПОЛОЖЕНИЯ АВТОНОМНЫХ УЧРЕЖДЕНИЙ Внести в часть вторую […]
  • С какого по какое время имеют право звонить банки До скольки могут звонить коллекторы? Проживаю в Челябинске, у меня есть 4 дня задолженности в Альфа банке. По поводу задолженности коллекторы звонят с 7.00 утра. Вопрос такой: со скольки и до скольки имеют право звонить коллекторы домой […]
  • Возврат ндфл за медикаменты Налоговый вычет за лечение Разделы: В каких случаях можно получить возврат 13% на лечение? Налоговый вычет на лечение относится к категории социальных налоговых вычетов. На него распространяются общие требования к сроку и порядку […]
  • Закон україни про права громадян Виборчі права громадян Виборчі права громадян належать до найважливіших прав і свобод, гарантованих державою. Виборче право поділяється на активне – право обирати, та пасивне – право бути обраним. Ці права громадян закріплені статтею 38 […]

Обсуждение закрыто.