Винты на судне

Гребные винты

Устройства, предназначенные для создания упорного давления, воспринимаемого судном и являющегося основой его движения, называются движителями. Существуют движители различных видов: лопастные колеса, крыльчатые движители, гребные винты и т. д.

Крыльчатый движитель представляет собой диск, снабженный тремя-четырьмя вертикальными поворотными лопастями и расположенный горизонтально под кормой судна на вертикальном валу. Диск приводится во вращение от электродвигателя через коническую зубчатую передачу. Использование крыльчатых движителей обеспечивает высокую маневренность судна при отсутствии рулевого устройства и позволяет осуществлять задний ход без реверса двигателя. Однако конструктивная сложность таких движителей и их габариты, возрастающие с увеличением мощности энергетической установки судна, не позволяют применять их для крупных
судов. В последнее время крыльчатыми движителями типа «Фойтшнейдер» снабжают самоходные грузовые краны, некоторые мелкие суда и подруливающие устройства более крупных судов.

Наибольшее распространение в качестве движителя для судов получил гребной винт. Основными частями гребного винта (рис. 81) являются: ступица 1 винта с конусным отверстием внутри и лопасти 2, число которых может быть от двух до шести. Гребные винты выполняют с цельнолитыми, со съемными и с поворотными лопастями.


Рис. 81. Гребной винт с цельнолитыми лопастями.

Винты с цельнолитыми лопастями (рис. 81) применяют в основном на судах морского торгового флота. Такие винты отличаются небольшими весом и габаритом ступицы, а также более высокой прочностью в нормальных условиях эксплуатации.

Винты со съемными лопастями устанавливают на судах арктического флота, где по условиям эксплуатации замена поврежденной лопасти целой более удобна, чем замена всего винта. Кроме того, такие винты применяют в том случае, когда диаметр винта велик и отливка его затруднительна.

Винты с поворотными лопастями, иначе называемые винтами регулируемого шага (ВРШ), отличаются от обычных тем, что их лопасти закрепляются подвижно в ступице винта и могут поворачиваться вокруг своей оси на заданный угол при помощи особого привода. Этот привод, или механизм изменения шага (МИШ), обычно располагается внутри ступицы винта, поэтому ступица значительно больше, чем у обычных винтов. Механизм изменения шага бывает ручным, механическим, электромеханическим, гидравлическим и электрогидравлическим. В состав МИШ, за исключением ручного, входят: механизм поворота лопастей, размещаемый, как правило, в ступице винта; сервомотор, создающий усилия для поворота лопастей и располагаемый на участке между гребным валом и главным двигателем; обратная связь или устройство, показывающее величину нового шага винта.

Механизм поворота лопастей (рис. 82) бывает двух видов: зубчатый и кривошипный, причем последний более надежен и применяется во всех напряженных конструкциях винтов (больших мощностей и диаметров, высокооборотных ВРШ малых диаметров и др.).


Рис. 82. Механизм поворота лопастей: а — зубчатый; б — кривошипный.

Наиболее распространенным в настоящее время является гидравлический МИШ (рис. 83), обычно располагаемый в линии валопровода. Для поворота лопастей винта здесь используется энергия жидкости (чаще всего масла с малой вязкостью) под давлением. Гидравлический привод МИШ отличается относительной простотой устройства и возможностью создавать значительные рабочие усилия при сравнительно небольших габаритах и весе установки.


Рис. 83. Конструкция МИШ с гидравлическим приводом.

В ступице 4 винта находится поводок 1 штанги 5, помещенной внутри пустотелого гребного вала 6. Поводком 1, в пазу которого расположен палец 2 на комле лопасти, производится поворот последней вокруг своей оси. Для облегчения поворота комель лопасти посажен в гнездо ступицы на двухрядных конических роликоподшипниках 3. На другом конце штанги 5 располагается поршень сервомотора 7, соединенный обратной связью 8 с подвижной муфтой 12 и поршнем распределительного золотника 11. Масло в распределительный золотник 11 и сервомотор 7 подается через трубки 10 от масляного насоса. Управление изменением шага лопастей винта осуществляется рычагом 9, нижний конец которого скользит в пазу подвижной муфты. Гидравлический МИШ позволяет производить управление шагом винта с ходового мостика при помощи дистанционной пневматической системы.

Применение винтов регулируемого шага позволило значительно упростить управление судном, уменьшить габариты и вес главных двигателей за счет устранения ступеней и устройства заднего хода, давать судну обратный ход без перемены направления вращения гребного вала. Кроме того, применение ВРШ на таких судах, как буксиры, танкеры и лесовозы, позволяет привести шаг винта в соответствие с любой скоростью. Это повышает экономичность работы энергетической установки и дает возможность более полно использовать мощность главных двигателей на различных режимах работы.

www.stroitelstvo-new.ru

4) НАЗНАЧЕНИЕ СУДОВЫХ ДВИЖИТЕЛЕЙ. ГРЕБНОЙ ВИНТ. ШАГ ВИНТА. ВРШ

4) НАЗНАЧЕНИЕ СУДОВЫХ ДВИЖИТЕЛЕЙ. ГРЕБНОЙ ВИНТ. ШАГ ВИНТА. В Р Ш

Судовыми движителями называются специальные устройства, которые преобразуют энергию главных двигателей в движущую силу (полезную тягу), необходимую для преодоления сопротивления среды движению судна и обеспечения заданной скорости его движения.
По принципу действия судовые движители являются гидрореактивными, т.к. они создают движущую силу за счет реакции масс воды, отбрасываемых рабочими деталями движителя — лопастями — в сторону, противоположную движению судна.
В настоящее время на водном транспорте применяются следующие основные типы судовых движителей: гребной винт, гребное колесо, крыльчатый и водометный движители.
Гребной винт служит основным типом движителя для морских судов. Он состоит из нескольких лопастей, расположенных на ступице на одинаковых угловых расстояниях друг от друга. Число лопастей гребных винтов колеблется от 2 до 6. В целях предотвращения вибраций кормовой оконечности одновинтовых судов, число лопастей гребного винта принимают не менее четырех. Диаметр гребных винтов крупных современных судов достигает 6 — 8 м.
Различают три основных конструктивных типа гребных винтов: цельные винты (цельнолитые), винты со съемными лопастями (сборные) и винты с поворотными лопастями — винты регулируемого шага (В Р Ш).
Гребной винт характеризует его шаг. Шагом винта называется расстояние, на которое переместится точка винта за один полный оборот винта при вращении его в абсолютно твердом теле. Гребные винты, в зависимости от того, в какую сторону они вращаются, бывают левого и правого шага. В отличие от лопастей В Ф Ш у винтов регулируемого шага лопасти могут поворачиваться вокруг своей продольной оси и изменять шаг, что обеспечивает возможность использования полной мощности двигателя при оптимальной частоте вращения на любом режиме движения судна.
Расчет гребного винта заключается в определении его геометрических характеристик (диаметра, шага, дискового отношения и числа лопастей), обеспечивающих наиболее высокие пропульсивные качества судну в основном режиме его эксплуатации. Так, транспортному судну указанные характеристики должны обеспечить наивысшую скорость, буксирному — наибольшую тягу на гаке при полном использовании мощности главных двигателей.
Преимущества и недостатки В Р Ш по сравнению с обычным винтом: возможность изменять положение лопастей у В Р Ш позволяет изменять силу упора винта не меняя частоты и направления вращения вала с полного переднего хода до нуля, а затем до полного заднего хода. Это позволяет использовать на судне нереверсивный двигатель, который проще в обслуживании и моторесурс которого значительно выше реверсивного. За счет того, что нет необходимости выполнять реверс для изменения силы упора винта, а достаточно только развернуть лопасти винта, что делается дистанционно с мостика, время перехода судна от одного режима движения к другому значительно сокращается. Это улучшает маневренные качества судна, упрощает эксплуатации двигателя. Но В Р Ш значительно сложнее по конструкции, что уменьшает его надежность и увеличивает стоимость. В Р Ш имеют при том же К П Д больший вес и размеры, чем обычные винты, что усложняет их крепление.

moryak.biz

§ 13. Судовые движители

Движителями называются специальные устройства, преобразующие механическую работу судовой силовой установки в упорное давление, преодолевающее сопротивления и создающее поступательное движение судна.

На судах в качестве движителей применяются: гребные винты, крыльчатые движители и водометные движители. Находят применение также паруса, гребные колеса и другие движители.

По принципу действия движители разделяют на активные, к которым относят паруса, непосредственно преобразующие энергию ветра в поступательное движение судна, и реактивные — все остальные, так как создаваемое ими упорное давление получается в результате реакции масс воды, отбрасываемой в сторону, противоположную движению судна.

Наиболее распространенными благодаря простоте устройства и работы, компактности, надежности в эксплуатации и наибольшему коэффициенту полезного действия являются гребные винты. В зависимости от конструкции их подразделяют на два типа: цельные винты (ступица с лопастями изготовляется совместно) и винты со съемными лопастями , применяемые на судах, плавающих во льдах. Такие винты называются винтами фиксированного шага, а винты, имеющие механизмы, поворачивающие лопасти в ступице и изменяющие шаг винта, называются винтами регулируемого шага.

Шагом винта называется путь в направлении оси, который проходит любая точка поверхности винта за один его оборот.

Гребные винты фиксированного шага — ВФШ (рис. 27) изготовляют цельными (одной деталью), литыми, сварными или штампованными, и они состоят из следующих основных элементов: ступицы, представляющей собой втулку, наеаживаемую на конус шейки гребного вала, и лопастей (от 3 до 6), радиально расположенных на ступице. Нижняя часть лопасти, соединяющая ее со ступицей, называется корнем лопасти; верхняя часть — вершиной или концом; поверхность лопасти, обращенная в сторону корпуса судна, носит название засасывающей поверхности, обратная поверхность — нагнетающей, которая в большинстве случаев представляет собой правильную винтовую поверхность. Пересечение этих двух поверхностей образует кромки лопастей.

Диаметром гребного винта D называется диаметр окружности, описанной вершиной лопасти. Диаметр винта крупных судов доходит до 6,0 м и более.

Применяют гребные винты правого и левого вращения, их различают по общим правилам: если винт завинчивается вращением по часовой стрелке, то он называется винтом правого вращения, а если против часовой стрелки — винтом левого вращения.

При вращении винта его лопасти отбрасывают массы воды в одну из сторон. Реакция этой воды воспринимается нагнетающей поверхностью лопасти, создающей упор винта, который через ступицу и гребной вал передается на упорный подшипник, преобразуясь в силу, движущую судно.

Чтобы понять, как возникает упорное движение при вращении винта (рис. 27), рассмотрим те силы, которые действуют при этом на элементарной площадке его лопасти, двигающейся по окружности со скоростью v 0 И одновременно перемещающейся вместе с судном со скоростью v 1 . Угол а, образовавшийся между результирующей этих сил v и хордой рассматриваемой элементарной площади лопасти, будет углом атаки, создающим на ней подъемную силу R. Если разложить эту силу на составляющие, то одна составляющая —сила Р, действующая по направлению движения судна, и будет силой-упора, а вторая—сила T, действующая по окружности в сторону, обратную вращению винта, создает момент относительно его оси, который преодолевается судовым двигателем.

Гребной винт регулируемого шага (ВРШ) имеет конструкцию, обеспечивающую поворот лопастей в ступице во время работы винта на ходу судна из поста управления, расположенного в рубке. При повороте лопастей, осуществляемом механизмом по многообразным кинематическим схемам (одна из которых—поворотно-шатунная—приведена на рис. 28), изменяется шаг винта, отчего изменяется и величина создаваемого им упора, увеличивающего или уменьшающего скорость хода, и направление движения судна, при этом число оборотов, мощность главной машины и направление ее вращения остаются неизменными.

Использование винтов регулируемого шага допускает применение на судах нереверсивных главных машин с упрощенной системой обслуживания, что сокращает износ их цилиндров примерно на 30—40% (возникающий у реверсивных машин от частого изменения режима работы и направления вращения), позволяет полнее использовать мощность машин и поддерживать высокое значение к. п. д. винта.

Суда с ВРШ обладают гораздо более высокими маневренными качествами, чем суда с ВФШ.

Суда с ВРШ обладают гораздо более высокими маневренными качествами, чем суда с ВФШ.

Крыльчатый движитель (рис. 29) представляет собою конструктивное устройство, состоящее из горизонтально вращающегося цилиндра с вертикально расположенными на нем 6—8 лопастями мечевидной, обтекаемой формы, поворачивающимися вокруг своих осей маятниковым рычагом, управляемым из рулевой рубки.

При вращении диска на лопастях, как на крыле, возникает подъемная сила, составляющая которой создает упорное давление. При повороте лопастей изменяется величина упора и его направление, что дает возможность варьировать направление движения судна без помощи руля (на судне с этим движителем руль не устанавливается), а также величину упора движителя от «Полного вперед» до «Полного назад» или останавливать судно, не изменяя скорости и направления вращения (без реверса) главной силовой установки.

К. п. д. крыльчатого движителя почти равен к. п. д. гребного винта, но крыльчатый движитель значительно сложнее по конструкции. Выступающие лопасти часто ломаются. Однако в последнее время этот движитель находит все более широкое применение, обеспечивая судам хорошую маневренность, позволяющую им свободно работать в узкостях.

Водометный движитель относится к серии водопроточных движителей. Современные водометные движители делают трех типов: с выбросом водяной струи в воду, в атмосферу и с полуподводным выбросом.

Гребной винт работает как насос, засасывающий воду в канал через трубу, проходящую в днище корпуса впереди винта. Для защиты от попадания на винт посторонних предметов в начале канала укрепляется защитная решетка.

Для уменьшения потерь от закручивания гребным винтом водного потока и повышения к. п. д. движителя за винтом устанавливается контрпропеллер. Направление хода судна изменяется перекладкой реверс-руля.

Коэффициент полезного действия такого движителя составляет только 35—45%, а отсутствие всяких выступающих частей в подводной части судна обеспечивает ему большую проходимость на мелководье, в узкостях и на засоренных фарватерах. Для судна с таким движителем не являются препятствием даже плавающие предметы, через которые оно свободно переходит.

Перечисленные преимущества водометного движителя сделали его применение особенно удобным на речных судах, в первую очередь на лесосплаве.

В последние годы водометные движители стали применяться и на быстроходных судах, таких, как суда на подводных крыльях, развивающие скорость хода до 95 км/час.

Использование современных паровых и газовых турбин позволяет успешно применить водометные движители на крупных морских судах, где по расчетам пропульсивный к. п. д. может достичь около 83%, что на 11% выше пропульсивного коэффициента гребного винта, запроектированного для того же судна.

К недостаткам судов с этим движителем следует отнести потери судном грузоподъемности на величину веса прокачиваемой воды и потери объема внутренних помещений, занимаемого каналом.

flot.com

Типы гребных винтов, их характеристики и устройство

Гребной винт (рис. 5) преобразует вращение вала двигателя в упор — силу, толкающую судно вперед. При вращении винта на поверхностях его лопастей, обращенных вперед — в сторону движения судна (засасывающих), — создается разрежение, а на обращенных назад (нагнетающих) — повышенное давление воды. В результате разности давлений на лопастях возникает сила Y (ее называют подъемной). Разложив силу на составляющие — одну, направленную в сторону движения судна, а вторую перпендикулярно к нему, получим силу Р, создающую упор гребного винта, и силу F, образующую крутящий момент, который преодолевается двигателем.

Упор в большой степени зависит от угла атаки α профиля лопасти. Оптимальное значение угла атаки для быстроходных катерных винтов 4–8°. Если он больше оптимальной величины, то мощность двигателя непроизводительно затрачивается на преодоление большого крутящего момента; если же угол атаки мал, подъемная сила и, следовательно, упор Р будут невелики, мощность двигателя окажется неиспользованной.

На схеме, иллюстрирующей характер взаимодействия лопасти и воды, а можно представить как угол между направлением вектора скорости набегающего на лопасть потока W и нагнетающей поверхностью. Вектор скорости потока W образован геометрическим сложением векторов скорости поступательного перемещения Va винта вместе с судном и скорости вращения Vr, т. е. скорости перемещения лопасти в плоскости, перпендикулярной оси винта.

На рис. 5 показаны силы и скорости, действующие в каком-то одном определенном поперечном сечении лопасти, расположенном на каком-то определенном радиусе r гребного винта. Круговая скорость вращения V зависит от радиуса, на котором сечение расположено (Vr = 2 • π • r • n, где n — частота вращения винта, об/сек). Скорость же поступательного движения винта Va остается постоянной для любого сечения лопасти. Таким образом, чем больше r, т. е. чем ближе расположен рассматриваемый участок к концу лопасти, тем больше окружная скорость Vr, а следовательно, и суммарная скорость W.

Так как сторона Va в треугольнике рассматриваемых скоростей остается постоянной, то по мере удаления сечения лопасти от центра необходимо разворачивать лопасти под большим углом к оси винта, чтобы α сохранял оптимальную величину, т. е. оставался одинаковым для всех сечений. Таким образом, получается винтовая поверхность с постоянным шагом Н (напомним, что «шагом винта» называется перемещение любой точки лопасти вдоль оси за один полный оборот винта).

Представить сложную винтовую поверхность лопасти помогает рис. 6. Лопасть при работе винта как бы скользит по направляющим угольникам, имеющим на каждом радиусе разную длину основания, но одинаковую высоту — шаг Н, и поднимается за один оборот на величину Н. Произведение же шага на частоту вращения (Н • n) представляет собой теоретическую скорость перемещения винта вдоль оси.

При движении корпус судна увлекает за собой воду, создавая попутный поток, поэтому действительная скорость встречи винта с водой Va всегда несколько меньше, чем фактическая скорость судна V. У быстроходных глиссирующих мотолодок разница невелика — всего около 2–5 %, так как их корпус скользит по воде и почти не «тянет» ее за собой. У катеров, идущих со средней скоростью хода, эта разница составляет 5–8 %, а у тихоходных водоизмещающих глубокосидящих катеров достигает 15–20 %. Сравним теперь теоретическую скорость винта Н • n со скоростью его фактического перемещения Va относительно потока воды (рис. 5). Пусть это будет «Казанка», идущая под мотором «Вихрь» со скоростью 42 км/ч (11,7 м/с). Скорость натекания воды на винт окажется на 5 % меньше:

H • n — Va = (1 — 0,05) • 11,7 = 11,1 м/с

Эта величина, называемая скольжением, и обуславливает работу лопасти винта под углом атаки α к потоку воды, имеющему скорость W. Отношение скольжения к теоретической скорости винта в процентах называется относительным скольжением. Максимальной величины (100%) скольжение достигает при работе винта на судне, пришвартованном к берегу. Наименьшее скольжение 8–15 % имеют винты легких гоночных мотолодок на полном ходу; у винтов глиссирующих прогулочньк мотолодок и катеров скольжение достигает 15–25 %, у тяжелых водоизмещающих катеров 20–40 %, а у парусных яхт, имеющих вспомогательный двигатель, 50–70 %.

Коэффициент полезного действия. Эффективность работы гребного винта оценивается величиной его КПД, т. е. отношения полезно используемой мощности к затрачиваемой мощности двигателя. Полезная мощность или ежесекундное количество работы, используемой непосредственно для движения судна вперед, равно произведению сопротивления воды R движению судна на его скорость V (Nn = R • V, кгс • м/с).

Мощность, затрачиваемую на вращение гребного винта, можно выразить в виде зависимости Nз от крутящего момента М и частоты вращения n:

КПД = R • V / 2 • π • n • М

Однако следует еще учесть взаимовлияние корпуса и винта. При работе гребной винт захватывает и отбрасывает в корму значительные массы воды, вследствие чего скорость потока, обтекающего кормовую часть корпуса, повышается, а давление падает. Этому сопутствует явление засасывания, т. е. появление дополнительной силы сопротивления воды движению судна по сравнению с тем, которое оно испытывает при буксировке. Следовательно, винт должен развивать упор, превышающий сопротивление корпуса на некоторую величину Pe = R / (1 — t), кг.

Здесь t — коэффициент засасывания, величина которого зависит от скорости движения судна и обводов корпуса в районе расположения винта. На глиссирующих катерах и мотолодках, на которых винт расположен под сравнительно плоским днищем и не имеет перед собой ахтерштевня, при скоростях свыше 30 км/ч t = 0,02–0,03. На тихоходных (10–25 км/ч) лодках и катерах, на которых гребной винт установлен за ахтерштевнем, t = 0,06–0,15.

В свою очередь и корпус судна, образуя попутный поток, уменьшает скорость потока воды, натекающей на гребной винт. Это учитывает коэффициент попутного потока w):

Таким образом, полезная мощность с учетом взаимовлияния корпуса и винта равна Nп = Ре • (1 — t) • Va / (l — w), кгс • м/с, а общий пропульсивный КПД комплекса судно — двигатель — гребной винт вычисляется по формуле:

КПД полный = Nп / = Ре • Va / 2 • π • n • М) ((1 — t) / (1 — w)) • КПД редуктора

Максимальная величина КПД гребного винта может достигать 70–80 %, однако на практике довольно трудно выбрать оптимальные величины основных параметров, от которых зависит КПД: диаметра и частоты вращения. Поэтому на малых судах КПД реальных винтов может оказаться много ниже, вплоть до 45 %.

Максимальной эффективности гребной винт достигает при относительном скольжении 10–30%. При увеличении скольжения КПД быстро падает; при работе винта в швартовном режиме он становится равным нулю. Подобным же образом КПД уменьшается до нуля, когда вследствие больших оборотов при малом шаге упор винта равен нулю.

Коэффициент влияния корпуса нередко оказывается больше единицы (1,11–1,15), а потери в валопроводе (КПД редуктора) оцениваются величиной 0,9–0,95.

Диаметр и шаг винта. Элементы гребного винта для конкретного судна можно рассчитать, лишь располагая кривой сопротивления воды движению данного судна, внешней характеристикой двигателя и расчетными диаграммами, полученными по результатам модельных испытаний гребных винтов, имеющих определенные параметры и форму лопастей.

Диаметр гребных винтов, полученный как по приближенной формуле, так и с помощью точных расчетов, обычно увеличивают примерно на 5 % с тем, чтобы получить заведомо «тяжелый» винт и добиться его согласованности с двигателем при последующих испытаниях судна. Для «облегчения» винта его постепенно подрезают по диаметру до получения номинальных оборотов двигателя при расчетной скорости.

Шаг винта можно ориентировочно определить, зная величину относительного скольжения S для данного типа судна и ожидаемую скорость лодки:

Оптимальная величина скольжения для винтов, имеющих шаговое отношение H/D = 1,2, составляет S = 0,14–0,16; для винтов, имеющих H/D > 1,2, S = 0,12–0,14. При выборе шагового отношения H/D можно руководствоваться следующими рекомендациями. Для легких быстроходных лодок требуются винты с большим шагом или шаговым отношением H/D, для тяжелых и тихоходных — с меньшим. При обычно применяемых двигателях с номинальной частотой вращения 1500–5000 об/мин оптимальное шаговое отношение H/D составляет: для гоночных мотолодок и глиссеров — 0,9–1,5; легких прогулочных катеров — 0,8–1,2; водоизмещающих катеров — 0,6— 1,0 и очень тяжелых тихоходных катеров — 0,55–0,80. Следует иметь в виду, что эти значения справедливы, если гребной вал делает примерно 1000 об/мин из расчета на каждые 15 км/ч скорости лодки; при иной частоте вращения вала необходимо применять редуктор.

«Легкий» или «тяжелый» гребной винт. Диаметр и шаг винта являются важнейшими параметрами, от которых зависит степень использования мощности двигателя, а следовательно, и возможность достижения наибольшей скорости хода судна.

Каждый двигатель имеет свою так называемую внешнюю характеристику — зависимость снимаемой с вала мощности от частоты вращения коленвала при полностью открытом дросселе карбюратора. Такая характеристика для подвесного мотора «Вихрь», например, показана на рис. 8 (кривая 1). Максимум мощности в 21,5 л. с. двигатель развивает при 5000 об/мин.

Мощность, которая поглощается на данной лодке гребным винтом в зависимости от частоты вращения мотора, показана на этом же рисунке не одной, а тремя кривыми — винтовыми характеристиками 2, 3 и 4, каждая из которых соответствует определенному гребному винту, т. е. винту определенного шага и диаметра.

При увеличении и шага и диаметра винта выше оптимальных значений лопасти захватывают и отбрасывают назад слишком большое количество воды: упор при этом возрастает, но одновременно увеличивается и потребный крутящий момент на гребном валу. Винтовая характеристика 2 такого винта пересекается с внешней характеристикой двигателя 1 в точке А. Это означает, что двигатель уже достиг предельного — максимального значения крутящего момента и не в состоянии проворачивать гребной винт с большой частотой вращения, т. е. не развивает номинальную частоту вращения и соответствующую ей номинальную мощность. В данном случае положение точки А показывает, что двигатель отдает всего 12 л. с. мощности вместо 22 л. с. Такой гребной винт называется «гидродинамически тяжелым».

Наоборот, если шаг или диаметр винта малы (кривая 4), и упор и потребный крутящий момент будут меньше, поэтому двигатель не только легко разовьет, но и превысит значение номинальной частоты вращения коленвала. Режим его работы будет характеризоваться точкой С. И в этом случае мощность двигателя будет использоваться не полностью, а работа на слишком высоких оборотах сопряжена с опасно большим износом деталей. При этом надо подчеркнуть, что поскольку упор винта невелик, судно не достигнет максимально возможной скорости. Такой винт называется «гидродинамически легким».

Для каждого конкретного сочетания судна и двигателя существует оптимальный гребной винт. Для рассматриваемого примера такой оптимальный винт имеет характеристику 3, которая пересекается с внешней характеристикой двигателя в точке Д, соответствующей его максимальной мощности.

Рис. 9 иллюстрирует важность правильного подбора винта на примере мотолодки «Крым» с подвесным мотором «Вихрь». При использовании штатного винта мотора с шагом 300 мм мотолодка с 2 людьми на борту развивает скорость 37 км/ч. С полной нагрузкой 4 человека скорость лодки снижается до 22 км/ч.

При замене другим с шагом 264 мм скорость с полной нагрузкой повышается до 32 км/ч. Оптимальные же результаты достигаются с гребным винтом, имеющим шаговое отношение H/D = 1,0 (шаг и диаметр равны 240 мм); максимальная скорость повышается до 40 — 42 км/ч, скорость с полной нагрузкой — до 38 км/ч. Несложно сделать вывод и о существенной экономии горючего, которую можно получить с винтом уменьшенного шага. Если со штатным винтом при нагрузке 400 кг расходуется 400 г горючего на каждый пройденный километр пути, то при установке винта с шагом 240 мм расход горючего составит 237 г/км.

На рис. 10 представлен пример теоретического чертежа для изготовления «грузовых» гребных винтов для мотора «Прибой». Эти винты имеют почти симметричный контур лопасти.

У подвесных моторов изменение шага гребного винта — практически единственная возможность согласовать работу винта с двигателем, так как размеры корпуса редуктора ограничивают максимальный диаметр винта, который может быть установлен на моторе. В некоторой степени винт можно «облегчить», если его подрезать по диаметру, однако оптимальным вариантом является применение сменных винтов с различным шаговым отношением.

Численные рекомендации для наиболее популярных моторов мощностью 20–25 л. с. могут быть следующие. Штатные винты, имеющие Н = 280–300 мм, дают оптимальные результаты на сравнительно плоскодонных лодках с массой корпуса до 150 кг и нагрузкой 1–2 человека. На еще более легкой лодке массой до 100 кг можно получить прирост скорости за счет увеличения Н на 8–12 %.

На более тяжелых глиссирующих корпусах, на лодках, имеющих большую килеватость днища и при большой нагрузке (4–5 чел.), шаг винта может быть уменьшен на 10–15 % (до 240–220 мм), но использовать такой винт при поездке без пассажиров с малой нагрузкой не рекомендуется: двигатель будет «перекручивать обороты» и быстро выйдет из строя.

При установке подвесного мотора на тихоходной водоизмещающей шлюпке рекомендуется применять трех- и четырехлопастные винты с соотношением H/D не менее 0,7; при этом ширину лопасти и профиль ее поперечного сечения сохраняют такими же, как и на штатном винте мотора.

В случае, когда для облегчения винта подрезают концы лопастей до меньшего диаметра, кромки лопастей необходимо аккуратно скруглять, а получившийся контур лопасти плавно сопрягать со старым по возможности без существенного уменьшения площади лопастей. Обрезку винта или небольшое изменение его шага (что возможно на стальных и латунных винтах путем подгибания лопастей в нагретом состоянии в каждом сечении лопасти) можно выполнить, руководствуясь формулой:

где Н — исходный конструктивный шаг винта; n0 — номинальная частота вращения двигателя; n1 — частота вращения двигателя, полученная при испытаниях судна с данным винтом.

При замене согласованного с корпусом и двигателем гребного винта другим, с близкими величинами Н и D (расхождение должно быть не более 10 %), требуется, чтобы сумма этих величин для старого и нового винтов была равна.

ouvtk.ru

Гребной винт, разновидности и характеристики

Важна максимальная скорость, уверенный и быстрый выход на глиссер с наибольшей нагрузкой? Или хотите просто подходящую скорость для троллинга?

Часто у владельца катера или моторной лодки возникает вопрос выбора наиболее подходящего гребного винта. Гребной винт — это движитель вашего катера и моторной лодки. Преобразуя вращения вала двигателя в упор (силу, которая толкает судно) гребной винт приводит в движение катер или мотолодку. И от того, какого он вида, из какого материала сделан, и какими характеристиками обладает — зависит то, как будет плыть судно. Рассмотрим возможные варианты и характеристики.

3 или 4 лопасти

3-х лопастной гребной винт обладает меньшим сопротивлением, у него выше коэффициент полезного действия, однако на 3-х лопастных винтах раньше возникает кавитация — это когда при высоких скоростях возле лопастей происходит парообразование и последующая конденсация пузырьков пара в потоке жидкости. Такие газовые мешочки из пара и воздуха уменьшают осевой упор и вращающий момент, а так же разрушают поверхность гребного винта. 4-х лопастной гребной винт при том же диаметре позволяет переработать большую мощность и снизить вибрацию.

4-х лопастной винт уменьшает время выхода на глиссирование, может экономить топливо при движении на крейсерском ходе. Но максимально достигаемая скорость судна с 4-х лопастным винтом меньше по сравнению с 3-х лопастным винтом того же диаметра и шага.

Шаг и диаметр

Диаметр гребного винта — это диаметр окружности, охватывающей все лопасти винта. Как правило, чем меньше обороты гребного вала, тем больше должен быть диаметр. Для относительно тихоходных судов рекомендован винт с большим диаметром, соответственно для скоростных судов — с меньшим.

Шаг гребного винта — вторая важнейшая техническая характеристика. Шаг винта соответствует расстоянию, на которое винт переместится за один полный оборот в плотной среде (не воде) без проскальзывания. Шаг определяется как угол наклона лопасти к горизонтальной оси крыльчатки и измеряется в дюймах. Чем больше угол наклона лопасти, тем больший упор создает винт при вращении. Поэтому шаг винта напрямую влияет на максимальные обороты мотора. Чем меньше шаг, тем большие обороты может развить двигатель. Маленький шаг винта имеет худшие показатели по скорости, но лучшие по осиливаемой массе. Важно подобрать шаг винта так, чтобы при максимально открытой дроссельной заслонке обороты двигателя были в рабочем диапазоне рекомендованным производителем мотора. Тогда получим хороший выход на глиссирование, приличную максимальную скорость и главное – это правильную работу двигателя, без лишнего износа.

Материал изготовления

  • Стальной винт

— Обладает лучшим КПД по сравнению с алюминиевым аналогом, за счет меньшей толщины лопасти, сложной модели крыльчатки и хорошей зеркальности поверхности. Данный винт меньше подвержен кавитации, как следствие он имеет высокие скоростные характеристики. Высокая прочность стального винта позволяет не стираться о песчаное дно и препятствует образованию на нем выщерблен, не коррозирует в соленой воде. Такой винт может без изменения геометрии лопастей справиться с небольшим ударом о топляк или дно.

— Стоимость стального винта выше, чем алюминиевого. В случае удара о камень стальной винт окажет сопротивление, и значительная часть разрушительной энергии удара перейдет на редуктор и вал. Как следствие может быть деформация частей редуктора, что намного хуже повреждения самого винта.

  • Алюминиевый винт

— Это в первую очередь относительно недорогая цена. Высокая ремонтопригодность, и в случае жесткого столкновения о камень или топляк — минимальный ущерб для дорогостоящих деталей редуктора двигателя, винт погасит часть энергии удара.

— Мягкий алюминиевый винт стирается о песчаное дно, образующиеся на его лопастях выщерблены (от песка, поднимаемого винтом при движении по мелководью) создают дополнительную турбулентность и уменьшают КПД. Геометрия лопастей может меняться при столкновении с незначительными препятствиями, такими как затопленные коряги или бутылки.

Выбор гребного винта — это индивидуальное дело, главное точно определить задачи для своего катера и моторной лодки. Если на вашем судне установлено два двигателя, то не забудьте выставить гребные винты противоположного вращения (как правило от правого борта — правосторонний, левого борта — левосторонний). Не забывайте про такие технические решения как укол откидки (угол наклона лопасти гребного винта по отношению к оси ступицы). Положительный наклон чуть увеличивает КПД и позволяет использовать винт большего диаметра, отрицательный в свою очередь обеспечивает дополнительную прочность лопасти при работе на очень высоких скоростях. Для сильно нагруженных гребных винтов лопасти наклона обычно не имеют, они перпендикулярны ступице.

Для подбора гребного винта максимально соответствующего вашим задачам, конструкции катера и показателям двигателя вы можете получить более подробную профессиональную консультацию в наших магазинах.

xn--38-6kci3alqqaulfe.xn--p1ai

Смотрите так же:

  • Пособие при увольнении с работы Выходное пособие при увольнении. Порядок и размер выплаты Выходное пособие – это определенная Трудовым кодексом (далее ТК) РФ или коллективным договором денежная сумма, которая выплачивается работнику, в последний день его работы (день […]
  • Образец приказа по сокращению сотрудника Приказ об увольнении по сокращению штата (образец) Обновление: 9 октября 2017 г. Образец приказа об увольнении по сокращению штата Трудовым законодательством установлена строгая процедура увольнения работников в связи с сокращением […]
  • Закон юридический адрес Юридическое и фактическое место нахождения юридического лица: последствия их несовпадения Определимся с понятиями В законодательстве закреплено, что юридическое лицо имеет наименование, содержащее указание на его организационно-правовую […]
  • Калькулятор алиментов на одного ребенка Расчет алиментов на ребенка в 2017 году на примерах Мало кто из супругов знает о том, какая методика расчета алиментов используется в том или ином случае, поэтому рассмотрим этот вопрос подробней. Это поможет избежать нелепых ситуаций в […]
  • Приказ за халатное отношение Дисциплинарное взыскание, образец приказа Поддержание трудовой дисциплины во вверенном ему учреждении – важнейшая обязанность каждого руководителя. От этого напрямую зависит: общая эффективность работы всей организации, социальный […]
  • Образец исковое несовершеннолетнего ответчика Образец иска о взыскании алиментов Образец иска о взыскании алиментов в долях от заработка Образец искового заявления о взыскании алиментов в долях от заработка ___________________области (края, республики) Истец: […]

Комментарии запрещены.