Фотоэффекты законы

Рубрикатор

Фотоэффект и его законы. Уравнение Эйнштейна для фотоэффекта. Кванты света. Применение фотоэффекта в технике

Фотоэффект – это вырывание электронов из вещества под действием света.

Фотоэффект был открыт в 1887 г. немецким физиком Герцем и изучался экспериментально русским учёным Столетовым.

Столетов в опытах использовал стеклянный вакуумный баллон с впаянными в него двумя электродами. На электроды подавалось напряжение, а отрицательный электрод освещался светом. Под действием света из электрода вырывались электроны, которые двигались ко второму электроду. Т.е. создавался электрический ток.

В результате опытов Столетов получил следующие законы:

1. Количество электронов, вырываемых светом с поверхности металла за 1 с, прямо пропорционально поглощаемой за это время энергии световой волны.

2. Максимальная кинетическая энергия фотоэлектронов линейно возрастает с частотой света и не зависит от его интенсивности.

Объяснение фотоэффекта было дано в 1905 г. Эйнштейном.

Он использовал гипотезу немецкого физика Планка: свет излучается и поглощается отдельными порциями – квантами.

Уравнение Эйнштейна:h∙ν=A+m∙υ22 энергия порции света h∙ν идёт на совершение работы выхода A электрона из металла и на сообщение электрону кинетической энергии m∙υ22.

Приборы, в основе действия которых лежит фотоэффект, называются фотоэлементами.

Они используются в кино для воспроизведения звука, в фотометрии для измерения освещённости, в калькуляторах, в солнечных батареях и т.д.

ifreestore.net

Фотоэффекты законы

Фотоэффектом называется освобождение (полное или частичное) электронов от связей с атомами и молекулами вещества под воздействием света (видимого, инфракрасного и ультрафиолетового). Если электроны выходят за пределы освещаемого вещества (полное освобождение), то фотоэффект называется внешним (открыт в 1887 г. Герцем и подробно исследован в 1888 г. Л. Г. Столетовым). Если же электроны теряют связь только со «своими» атомами и молекулами, но остаются внутри освещаемого вещества в качестве «свободных электронов» (частичное освобождение), увеличивая тем самым электропроводность вещества, то фотоэффект называется внутренним (открыт в 1873 г. американским физиком У. Смитом).

Внешний фотоэффект наблюдается у металлов. Если, например, цинковую пластинку, соединенную с электроскопом и заряженную отрицательно, осветить ультрафиолетовыми лучами, то электроскоп быстро разрядится; в случае положительно заряженной пластинки разрядки не происходит. Отсюда следует, что свет вырывает из металла отрицательно заряженные частицы; определение величины их заряда (выполненное в 1898 г. Дж. Дж. Томсоном) показало, что эти частицы являются электронами.

Принципиальная измерительная схема, с помощью которой исследовался внешний фотоэффект, изображена на рис. 368.

Отрицательный полюс батареи присоединен к металлической пластинке К (катод), положительный — к вспомогательному электроду а (анод). Оба электрода помещены в эвакуированный сосуд, имеющий кварцевое окно F (прозрачное для оптического излучения). Поскольку электрическая цепь оказывается разомкнутой, ток в ней отсутствует. При освещении катода К свет вырывает из него электроны (фотоэлектроны), устремляющиеся к аноду; в цепи появляется ток (фототок).

Схема дает возможность измерять силу фототока (гальванометром и скорость фотоэлектронов при различных значениях напряжения между катодом и анодом и при различных условиях освещения катода.

Экспериментальные исследования, выполненные Столетовым, а также другими учеными, привели к установлению следующих основных законов внешнего фотоэффекта.

1. Фототок насыщения I (т. е. максимальное число электронов. освобождаемых светом в 1 с) прямо пропорционален световому потоку Ф:

где коэффициент пропорциональности называется фоточувствительностью освещаемой поверхности (измеряется в микроамперах на люмен, сокращенно —

2. Скорость фотоэлектронов возрастает с увеличением частоты падающего света и не зависит от его интенсивности.

3. Независимо от интенсивности света фотоэффект начинается только при определенной (для данного металла) минимальной частоте света, называемой «красной границей» фотоэффекта.

Второй и третий законы фотоэффекта нельзя объяснить на основе волновой теории света. Действительно, по этой теории, интенсивность света пропорциональна квадрату амплитуды электромагнитной волны, «раскачивающей» электрон в металле. Поэтому свет любой частоты, но достаточно большой интенсивности, должен был бы вырывать электроны из металла; иначе говоря, не должно было бы существовать «красной границы» фотоэффекта. Этот вывод противоречит третьему закону фотоэффекта. Далее, чем больше интенсивность света, тем большую кинетическую энергию должен был бы получить от него электрон. Поэтому скорость фотоэлектрона должна была бы возрастать с увеличением интенсивности света; этот вывод противоречит второму закону фотоэффекта.

Законы внешнего фотоэффекта получают простое истолкование на основе квантовой теории света. По этой теории, величина светового потока определяется числом световых квантов (фотонов), падающих в единицу времени на поверхность металла. Каждый фотон может взаимодействовать только с одним электроном. Поэтому

максимальное число фотоэлектронов должно быть пропорционально световому потоку (первый закон фотоэффекта).

Энергия фотона поглощенная электроном, расходуется на совершение электроном работы выхода А из металла (см. § 87); оставшаяся часть этой энергии представляет собой кинетическую энергию фотоэлектрона масса электрона, его скорость). Тогда, согласно закону сохранения энергии, можно написать

Эта формула, предложенная в 1905 г. Эйнштейном и подтвержденная затем многочисленными экспериментами, называется уравнением Эйнштейна.

Из уравнения Эйнштейна непосредственно видно, что скорость фотоэлектрона возрастает с увеличением частоты света и не зависит от его интенсивности (поскольку ни ни не зависят от интенсивности света). Этот вывод соответствует второму закону фотоэффекта.

Согласно формуле (26), с уменьшением частоты света кинетическая энергия фотоэлектронов уменьшается (величина А постоянна для данного освещаемого вещества). При некоторой достаточно малой частоте (или длине волны кинетическая энергия фотоэлектрона станет равной нулю и фотоэффект прекратится (третий закон фотоэффекта). Это имеет место при т. е. в случае, когда вся энергия фотона расходуется на совершение работы выхода электрона. Тогда

Формулы (27) определяют «красную границу» фотоэффекта. Из этих формул следует, что она зависит от величины работы выхода (от материала фотокатода).

В таблице приведены значения работы выхода А (в электрон-вольтах) и красной границы фотоэффекта (в микрометрах) для некоторых металлов.

Из таблицы видно, что, например, цезиевая пленка, нанесенная на вольфрам, дает фотоэффект даже при инфракрасном облучении, у натрия фотоэффект может быть вызван только видимым и ультрафиолетовым светом, а у цинка — только ультрафиолетовым.

На внешнем фотоэффекте основан важный физико-технический прибор, называемый вакуумным фотоэлементом (он является некоторым видоизменением установки, схематически изображенной на рис. 368).

Катодом К вакуумного фотоэлемента служит слой металла, нанесенный на внутреннюю поверхность эвакуированного стеклянного баллона В (рис. 369; G — гальванометр); анод А выполнен в виде металлического кольца, помещенного в центральной части баллона. При освещении катода в цепи фотоэлемента возникает электрический ток, сила которого пропорциональна величине светового потока.

Большинство современных фотоэлементов имеет сурьмяно-цезиевые или кислородно-цезиевые катоды, обладающие высокой фоточувствительностью. Кисйородно-цезиевые фотоэлементы чувствительны к инфракрасному и видимому свету (чувствительность сурьмяно-цезиевые фотоэлементы чувствительны к видимому и ультрафиолетовому свету (чувствительность

В некоторых случаях для увеличения чувствительности фотоэлемента его наполняют аргоном при давлении порядка 1 Па. Фототок в таком фотоэлементе усиливается вследствие ионизации аргдна, вызванной столкновениями фотоэлектронов с атомами аргона. Фоточувствительность газонаполненных фотоэлементов составляет около

Внутренний фотоэффект наблюдается у полупроводников и в меньшей мере у диэлектриков. Схема наблюдения внутреннего фотоэффекта показана на рис. 370. Полупроводниковая пластинка присоединена последовательное гальванометром к полюсам батареи. Ток в этой цепи незначителен, поскольку полупроводник обладает большим сопротивлением. Однако при освещении пластинки ток в цепи резко возрастает. Это обусловлено тем, что свет вырывает из атомов полупроводника электроны, которые, оставаясь внутри полупроводника, увеличивают его электропроводность (уменьшают сопротивление).

Фотоэлементы, основанные на внутреннем фотоэффекте, называются полупроводниковыми фотоэлементамиили фотосопротивлениями. Для их изготовления используют селен, сернистый свинец, сернистый кадмий и некоторые другие полупроводники. Фоточувствительность полупроводниковых фотоэлементов в сотни раз превышает фоточувствительность вакуумных фотоэлементов. Некоторые фотоэлементы обладают отчетливо выраженной спектральной чувствительностью. У селенового фотоэлемента спектральная чувствительность близка к спектральной чувствительности человеческого глаза (см рис. 304, § 118).

Недостатком полупроводниковых фотоэлементов является их заметная инерционность: изменение фототока запаздывает относительно изменения освещенности фотоэлемента. Поэтому полупроводниковые

фотоэлементы непригодны для регистрации быстропеременных световых потоков.

На внутреннем фотоэффекте основана еще одна разновидность фотоэлемента — полупроводниковый фотоэлемент с запирающий слоем или вентильный фотоэлемент. Схема этого фотоэлемента дана на рис. 371.

Металлическая пластинка и нанесенный на нее тонкий слой полупроводника соединены внешней электрической цепью, содержащей гальванометр Как было показано (см. § 90), в зоне контакта полупроводника с металлом образуется запирающий слой Б, обладающий вентильной проводимостью: он пропускает электроны только в направлении от полупроводника к металлу. При освещении полупроводникового слоя в нем, благодаря внутреннему фотоэффекту, появляются свободные электроны. Проходя (в процессе хаотического движения) через запирающий слой в металл и не имея возможности перемещаться в обратном направлении, эти электроны образуют в металле избыточный отрицательный заряд. Полупроводник, лишенный части «своих» электронов, приобретает положительный заряд. Разность потенциалов (порядка 0,1 В), возникающая между полупроводником и металлом, создает ток в цепи фотоэлемента.

Таким образом, вентильный фотоэлемент представляет собой генератор тока, непосредственно преобразующий световую энергию в электрическую.

В качестве полупроводников в вентильном фотоэлементе используют селен, закись меди, сернистый таллий, германий, кремний. Фоточувствительность вентильных фотоэлементов составляет

Коэффициент полезного действия современных кремниевых фотоэлементов (освещаемых солнечным светом) достигает по теоретическим расчетам, его можно повысить до 22%.

Поскольку фототок пропорционален световому потоку, фотоэлементы используются в качестве фотометрических приборов. К таким приборам относятся, например, люксметр (измеритель освещенности) и фотоэлектрический экспонометр.

Фотоэлемент позволяет преобразовывать колебания светового потока в соответствующие колебания фототока, что находит широкое применение в технике звукового кино, телевидения и т. п.

Исключительно велико значение фотоэлементов для телемеханизации и автоматизации производственных процессов. В сочетании с электронным усилителем и реле фотоэлемент является неотъемлемой частью автоматических устройств, которые, реагируя на световые сигналы, управляют работой различных промышленных и сельскохозяйственных установок и транспортных механизмов.

Весьма перспективным является практическое использование вентильных фотоэлементов в качестве генераторов электроэнергии. Батареи кремниевых фотоэлементов, получившие название солнечных батарей, успешно применяются на советских космических спутниках и кораблях для питания радиоаппаратуры. Для этого общая площадь фотоэлементов должна быть достаточно большой. Например, на космическом корабле «Союз-3» площадь поверхности солнечных батарей составляла около

Когда коэффициент полезного действия солнечных батарей будет повышен до 20—22%, они, несомненно, приобретут первостепенное значение среди источников, вырабатывающих электроэнергию для производственных и бытовых нужд.

books.alnam.ru

Фотоэффект. Законы фотоэффекта

Разделы: Физика

Цель урока: восприятие учащимися и первичное осознание нового материала по теме «Фотоэффект».

Задачи урока:

План урока:

Изучение нового материала. Фотоэффект и его законы.

Беседа. Демонстрация слайдов с помощью мультимедиа проектора.

Зарисовки и записи на доске и в тетрадях.

Описание опытов по материалам учебника.

Запись в дневниках.

Ход урока

1. Организация начала урока.

  • Постановка цели урока: усвоить понятие фотоэффекта, законов фотоэффекта до уровня применения в новой ситуации.

2. Проверка домашнего задания.

3. Подготовка учащихся к освоению новых знаний.

  • Назовите основные открытия физики к концу 19 века?

(В молекулярной физике, электродинамике, ядерной физике: 200 лет закону Максвелла, разработана МКТ, завершена теория Максвелла, открыты законы сохранения энергии, импульса, заряда).

  • Считалось, что развитие физики завершено. Правы ли были ученые? (нет)
  • Какие две теории света существуют? (Корпускулярная и волновая).

До конца 19 века волновая теория считалась основной, но она не объясняла сути некоторых явления природы, например, излучение веществом коротких электромагнитных волн.

  • Ученый Планк открыл, что испускание атомами кинетической энергии происходит не непрерывно, а порциями (квантами)

Е = hv, где h=0,03*10 -34 Дж*с

  • Какой русский ученый является основоположником корпускулярной теории света? (Ломоносов)

4. Изучение нового материала.

Фотоэлектрический эффект был открыт в 1887 году немецким физиком Г. Герцем и в 1888–1890 годах экспериментально исследован А. Г. Столетовым. Наиболее полное исследование явления фотоэффекта было выполнено Ф. Леонардом в 1900 г. К этому времени уже был открыт электрон (1897 г., Дж. Томсон), и стало ясно, что фотоэффект (или точнее – внешний фотоэффект) состоит в вырывании электронов из вещества под действием падающего на него света. Одним из подтверждений правильности квантовой теории было объяснение Альбертом Эйнштейном явления фотоэффекта.

В развитии представлений о природе света важный шаг был сделан при изучении одного замечательного явления.

Опыты Г. Герца (рассказывает ученик).

Для того чтобы получить о фотоэффекте более полное представление, нужно выяснить, от чего зависит число вырванных светом электронов и чем определяется их скорость и кинетическая энергия.

Опыты А. Г. Столетова. Изучение устройства и работы установки Столетова.

(рассматриваются с помощью материала учебника)

Законы фотоэффекта, экспериментально установленные А.Г. Столетовым.

(записываем законы в тетрадь).

Одним из подтверждений правильности квантовой теории было объяснение в 1905 году Альбертом Эйнштейном явления фотоэффекта, развившим идею М. Планка о прерывистом испускании света.

Экспериментальное определение постоянной Планка.

В экспериментальных закономерностях фотоэффекта Эйнштейн увидел убедительное доказательство того, что свет имеет прерывистую структуру и поглощается отдельными порциями.

Рассмотрим схему установки для исследования фотоэффекта (работа по плакату).

Исходя из закона сохранения и превращения энергии, Эйнштейн математически записал уравнение для энергетического баланса при внешнем фотоэффекте:

hν – энергия фотона, которая идет на работу выхода А электрона из металла и сообщение ему кинетической энергии.
А — работа выхода – минимальная работа, которую нужно совершить для выхода электрона из вещества.

Для каждого вещества фотоэффект наблюдается лишь в том случае, если частота света v света больше минимального значения vmin. Ведь, что бы вырвать электрон из металла даже без сообщения ему кинетической энергии, нужно совершить работу выхода А.

За уравнение для фотоэффекта в 1921 году Эйнштейну была присуждена Нобелевская премия.

Историческая справка.

Шестнадцать лет спустя, классическую простоту уравнения Эйнштейна Шведская академия наук отметила Нобелевской премией. Но в 1905 году, когда уравнение было написано впервые, на него ополчились все, даже Планк. Эйнштейн поступил так: как будто до него вообще не существовало физики, или, по крайне мере, как человек ничего не знающий об истинной природе света. Здесь сказалась замечательная особенность ума Эйнштейна: в совершенстве владея логикой, он больше доверял интуиции и фактам, причем случайных фактов в физике для него не существовало. Поэтому в явлении фотоэффекта он увидел не досадное исключение из правил оптики, а сигнал природы о существовании еще неизвестных, но глубоких законов. Так уж случилось, что исторически сначала были изучены волновые свойства света. Только в явлении фотоэффекта физики впервые столкнулись с его корпускулярными свойствами. У большинства из них инерция мышления была настолько велика, что они отказывались верить.

5. Рефлексия. Закрепление и обобщение знаний.

А) Физический диктант:

  • Явление испускания электронов веществом под действием света, называется…
  • Число электронов, вырываемых светом с поверхности вещества за 1с, прямо пропорционально…
  • Кинетическая энергия фотоэлектронов линейно возрастает с … и не зависит от …
  • Для каждого вещества существует наименьшая частота света, при которой еще возможен фотоэффект. Эта частота называется…
  • Работа, которую нужно совершить для вырывания электронов с поверхности вещества, называется…
  • Уравнение Эйнштейна для фотоэффекта (анализ формулы)…

Б) Используя выписанные вами формулы, решите задачи.

  • Как изменится скорость электронов при фотоэффекте, если увеличить частоту облучающего света, не изменяя общую мощность излучения? (увеличится).
  • Для опытов по фотоэффекту взяли пластину из металла с работой выхода 3,4·10 Дж и стали освещать ее светом частоты 6·10 Гц. Затем частоту уменьшили в 2 раза, одновременно увеличив в 1,5 раза число фотонов, падающих на пластину за 1 с. В результате этого число фотоэлектронов, покидающих пластину за 1 с. (стало равным нулю)
  • На рисунке приведены графики зависимости максимальной энергии фотоэлектронов от энергии падающих на фотокатод фотонов. В каком случае материал катода фотоэлемента имеет меньшую работу выхода? (первом)

6. Обобщение урока.

В начале ХХ века зародилась квантовая теория – теория движения и взаимодействия элементарных частиц и состоящих из них систем.

Для объяснения теплового излучения М. Планк предположил, что атомы испускают электромагнитную энергию не непрерывно, а отдельными порциями – квантами.

Поглощается электромагнитная энергия тоже отдельными порциями. Это подтверждает явление фотоэффекта открытого Г. Герцем и экспериментально исследованного А. Столетовым.

Объяснение фотоэффекта было дано А. Эйнштейном.

При излучении и поглощении свет проявляет корпускулярные свойства.

Открытие фотоэффекта имело очень большое значение для более глубокого понимания природы света. Но ценность науки состоит не только в том, что она выясняет сложное и многообразное строения окружающего нас мира, но и в том, что она даёт нам в руки средства, используя которые можно совершенствовать производство, улучшать условия материальной и культурной жизни общества.

Связь фотоэффекта с Вселенной: во Вселенной существует реликтовое излучение – холодный фотонный газ. Излучение есть, а мишень? Это наша планета, всё живое на ней…

Вследствие обращения Земли вокруг Солнца микроволновой фон испытывает допплеровский сдвиг частоты, который максимален в ноябре и минимален в мае. Поэтому астрологические прогнозы, привязанные к дате рождения, возможно, просто сдвинуты на девять месяцев. А тип, характер, судьба человека как-то зависят от степени влияния фонового излучения в момент зачатия.

Домашнее задание:

Параграф 5.1-5.3б Упр.7(1,2), Написать синквейн со словом «фотоэффект».

xn--i1abbnckbmcl9fb.xn--p1ai

VI. Квантовая физика

Тестирование онлайн

Фотоэлектрический эффект

Фотоэффектом называется явление взаимодействия электромагнитного излучения с веществом, в результате которого энергия излучения передается электронам вещества. Если фотоэффект сопровождается вылетом электронов с поверхности вещества, то его называют внешним фотоэффектом или фотоэлектронной эмиссией, а вылетающие электроны — фотоэлектронами. Если фотоэффект не сопровождается вылетом электронов с поверхности вещества, то его называют внутренним.

Уравнение Эйнштейна для фотоэффекта

На основе квантовых представлений Эйнштейн объяснил фотоэффект. Электрон внутри металла после поглощения одного фотона получает порцию энергии и стремится вылететь за пределы кристаллической решетки, т.е. покинуть поверхность твердого тела. При этом часть полученной энергии он израсходует на совершение работы по преодолению сил, удерживающих его внутри вещества. Остаток энергии будет равен кинетической энергии электрона:

Законы внешнего фотоэффекта

Столетовым Александром Григорьевичем (1839 — 1896) экспериментально были установлены законы внешнего фотоэффекта.

Первый закон фотоэффекта: фототок насыщения — максимальное число фотоэлектронов, вырываемых из вещества за единицу времени, — прямо пропорционален интенсивности падающего излучения.

Увеличение интенсивности света означает увеличение числа падающих фотонов, которые выбивают с поверхности металла больше электронов.

Второй закон фотоэффекта: максимальная кинетическая энергия фотоэлектронов не зависит от интенсивности падающего излучения и линейно возрастает с увеличением частоты падающего излучения.

Известно, что фототоком можно управлять, подавая на металлические пластины различные напряжения. Если на систему подать небольшое напряжение обратной полярности, «затрудняющее» вылет электронов, то ток уменьшится, так как фотоэлектронам, кроме работы выхода, придется совершать дополнительную работу против сил электрического поля. Максимальная кинетическая энергия электронов выражается через задерживающее напряжение:

Третий закон фотоэффекта: для каждого вещества существует граничная частота такая, что излучение меньшей частоты не вызывает фотоэффекта, какой бы ни была интенсивность падающего излучения. Эта минимальная частота излучения называется красной границей фотоэффекта.

Для большинства веществ фотоэффект возникает только под действием ультрафиолетового излучения. Однако некоторые металлы, например, литий, натрий и калий, испускают электроны и при облучении видимым светом.

fizmat.by

Фотоэффекты законы

А.Г. Столетов установил три закона фотоэффекта, не утратившие своего значения и в настоящее время. В современном виде законы внешнего фотоэффекта формулируются следующим образом:

I. При фиксированной частоте падающего света число фотоэлектронов, вырываемых из катода в единицу времени, пропорционально интенсивности света(сила тока насыщения пропорциональна энергетической освещенности Ee катода).

II. Максимальная начальная скорость (максимальная начальная кинетическая энергия) фотоэлектронов не зависит от интенсивности падающего света, а определяется только его частотой ν.

III. Для каждого вещества существует красная граница фотоэффекта, т.е. минимальная частота света (зависящая от химической природы вещества и состояния его поверхности), ниже которой фотоэффект невозможен.

Качественное объяснение фотоэффекта с волновой точки зрения на первый взгляд не должно было бы представлять трудностей. Действительно, под действием поля световой волны, в металле возникают колебания электронов, амплитуда которых (например, при резонансе) может быть достаточной для того, чтобы электроны покинули металл, – тогда и наблюдается фотоэффект. Кинетическая энергия вырываемого электрона из металла должна была бы зависеть от интенсивности падающего света, т.к. с увеличением последней электрону передавалась бы большая энергия. Однако этот вывод противоречит II закону фотоэффекта. Т.к., по волновой теории, энергия, передаваемая электроном, пропорциональна интенсивности света, то свет любой частоты, но достаточно большой интенсивности должен был бы вырывать электроны из металла; иными словами, красной границы фотоэффекта не должно быть, что противоречит III закону фотоэффекта. Кроме того, волновая теория фотоэффекта не смогла объяснить безынерционность фотоэффекта, установленную опытами. Таким образом, фотоэффект необъясним с точки зрения волновой теории света.

ens.tpu.ru

Смотрите так же:

  • Путин о гражданстве Путин призвал либерализовать процедуру получения гражданства РФ 07.06.2018 в 15:35, просмотров: 2501 Процедуру получения российского гражданства нужно либерализовать, предприняв в этой сфере серьезные кардинальные меры, заявил президент […]
  • Разрешение в презентации powerpoint Разрешение в презентации powerpoint Зададим себе немного нелепый вопрос: каковы размеры слайда? По опыту преподавания Автора реакция слушателей на этот вопрос всегда была такой: сначала снисходительное пожимание плечами - мол, ясно же: в […]
  • Политика переселения столыпина Переселение крестьян в Сибирь Правительство Столыпина провело и серию новых законов о переселении крестьян на окраины. Возможности широкого развития переселения были заложены уже в законе 6 июня 1904 года. Этот закон вводил свободу […]
  • Исковое взыскание страхового возмещения по осаго Исковое заявление о взыскании невыплаченной части страхового возмещения (не доплатили по ОСАГО) (образец) Мировому судье судебного участка № (если сумма >50000 то иск подается в районный суд) 396000, Воронеж, ул. Судейская, д. 1 Истец: […]
  • Штраф если проехал на красный свет Наказания и штрафы за проезд на красный и др. запрещающие сигналы. Советы юриста: как обжаловать штраф, возможно ли смягчение наказания? Проезд на красный сигнал светофора - одно из самых распространенных административных правонарушений. […]
  • Математическое выражения закона действия масс Математическое выражения закона действия масс В 1865 г. профессор Н.Н. Бекетов впервые высказал гипотезу о количественной взаимосвязи между массами реагентов и временем течения реакции: ". притяжение пропорционально произведению […]

Обсуждение закрыто.